

SAMPLE PAPER-1 HALF YEARLY EXAMINATION, 2018-19

MATHEMATICS

	Time Allowed : 3hrs	CLASS – X	Maximum Marks : 80	
	Name	Si	gn of Invigilator	
	General Instructions :			
	1. The question paper comprises of thin	rty questions divided into fo	ur Sections- A, B, C and D.	
	2. Section A comprises of six questions	s Q1 to Q6 of one mark each	1.	
	3. Section B comprises of six questions	s Q7 to Q12 of two marks ea	uch.	
	4. Section C comprises of ten question	s Q13 to Q22 of three marks	s each.	
	5. Section D comprises of eight question	ons Q23 to Q30 of four mark	ks each.	
	6. All questions are compulsory.			
	7. Use of calculators is not permitted.			
		<u>SECTION – A</u>		
1	The decimal expansion of the rationadecimals?	al number $\frac{43}{2^4 \times 5^3}$ will termi	nate after how many places of	1
2	If $a + b$ and $a - b$ are the two zeroe	es of a polynomial, then fir	nd that polynomial.	1
3	Find the values of k, such that the form $(2k-1)x + (k-1)y = 2k + 1$.	llowing pair of linear equa	ations is inconsistent $3x + y = 1$ and	1
4	The n th term of an A.P. is 6n+2. Find	the common difference.		1
5	If $sec\theta - cosec2\theta = 0$ then find the	e value of $sin^2\theta + tan^2\theta$.		1
6	Find the probability of 53 Sundays in	n the year 2018.		1
		<u>SECTION – B</u>		
7	105 goats and 175 cows have to be ta make up many trips to do so. If boats each trip must have equal number of carry on his boat.	aken across the river. Then man want to carry all the a canimals, then find the num	re is only one boat which will have to nimals in least number of trips and nber of animals in each trip he can	2
8	If -5 is a root of the quadratic equat $p(x^2 + x) + k = 0$ has equal	tion $2x^2 + px - 15 = 0$ at roots, find the value of k.	nd the quadratic equation	2

9 If A(-2, -1), B(a, 0), C(4, b) and D(1, 2) are are the vertices of a parallelogram ABCD, find the values of *a* and *b*.

Page 1 of 4

- $\begin{array}{l} 10 \\ \cdot \\ \cdot \\ \end{array} \text{ Evaluate } \frac{\cos^2 20^\circ + \cos^2 70^\circ}{\sec^2 50^\circ \cot^2 40^\circ} + 2 cosec^2 58^\circ 2 cot 58^\circ tan 32^\circ 4 tan 13^\circ tan 37^\circ tan 45^\circ tan 53^\circ tan 77^\circ tan 45^\circ tan 53^\circ tan 5$
 - Find the mean of the following distribution

x_i	4	6	9	10	15
f_i	5	10	10	7	8

- 12 Cards numbered from 31 to 83 are kept in a box. If a card is drawn at random from the box, find the 2 probability that the number on the drawn card is
 - (i) An even number

11

(ii) A perfect cube number.

<u>SECTION – C</u>

- 13 Prove that the square of any positive integer is of the form 5q, 5q + 1 and 5q + 4, for some 3 integer q.
- 14 If α and β are the zeroes of a quadratic polynomial $P(x) = kx^2 + 4x + 4$. Then find the value of k 3 if it is given that $\alpha^2 + \beta^2 = 24$.
- 15 Solve the pair of linear equations graphically x y = 1 and 2x + y = 8. Shade the area bounded 3 by the graphs of the given equations and the Y-axis. Also determine its area.
- 16 Solve the following quadratic equation $9x^2 9(a+b)x + (2a^2 + 5ab + 2b^2) = 0.$ 3
- 17 Find the middle term of the A.P. 7, 10, 13,....,187.
- 18 Find the coordinates of the points which divides the line segment joining the points A (2, -2) and 3 B (10,8) into four equal parts.
- **19** Prove that $(sinA + cosecA)^2 + (cosA + secA)^2 = 7 + tan^2A + cot^2A$. **3**
- 20 The lower window of a house is at a height of 2 m above the ground and its upper window is 4 m vertically above the lower window. At certain instant, the angles of elevation of a balloon from these windows are observed to be 60 and 30 respectively. Find the height of the balloon above the ground.
- 21 If the median of the following frequency distribution is 32.5, find the missing frequencies.

Class interval	0-10	10-20	20-30	30-40	40-50	50-60	60-70	Total
frequency	f_1	5	9	12	f_2	3	2	40

2

2

3

3

22 If all the aces are removed from a deck of playing cards and then from the remaining cards if one card is picked at random. Then find the probability of getting:

3

4

- (i) A face card.
- (ii) Either a king or a red card.
- (iii) Neither a queen nor a black card.

SECTION – D

23 Obtain all the zeroes of a polynomial $3x^4 + 6x^3 - 2x^2 - 10x - 5$, if two of its zeroes are $\sqrt{\frac{5}{3}}$ and 4

 $-\sqrt{\frac{5}{3}}$.

- A boat goes 30 km upstream and 40 km downstream in 8 hours. It can go 36 km upstream and 32 km downstream in the same time. Find the speed of the boat in still water and the speed of the stream.
- 25 A swimming pool is filled with three pipes with uniform flow. The first two pipes operating 4 simultaneously fill the pool in the same time during which the pool is filled by the third pipe alone. The second pipe fills the pool five hours faster than the first pipe and four hours slower than the third pipe. Find the time required by each pipe to fill the pool separately.
- 26 The sum of the three numbers in A.P. is 12 and the sum of their cubes is 288. Find the numbers. 4
- 27 If the coordinates of the mid points of the sides of a triangle are (1,1), (2,-3) and (3,4). Find the 4 coordinate of all the vertices of the triangle and hence find the centroid of the triangle.

28 Prove that
$$\left[\frac{1+\sin A - \cos A}{1+\sin A + \cos A}\right]^2 = \frac{1-\cos A}{1+\cos A}$$
.

- 29 The angle of elevation of an aeroplane from a point on the ground is 45°. After a flight of 15 4 seconds, the elevation changes to 30°. If the aeroplane is flying at a height of 3000 meters, find the speed of the aeroplane.
- 30 The frequency distribution of score obtained by 230 candidates in a medical entrance test is as follows:

	400-	450-	500-	550-	600-	650-	700-	750-
Scores	450	500	550	600	650	700	750	800
fi	20	35	40	32	24	27	18	34
-								

Construct a less than type as well as a more than type cumulative frequency curves, and hence obtain the median rainfall.

-000000-

Page 3 of 4

Page 4 of 4

Download from : https://jsuniltutorial.weebly.com/

Curukui	
The School MARKING SCHEME - SAMPLE PAPER-1 HALF YEARLY EXAMINATION, 2018-19	
MATHEMATICS	
CLASS – X	
<u>SECTION – A</u>	
After 4 places of decimal. (0.0043)	1
$P(x)=k\{x^2 + 2ax + (a^2 - b^2)\}$	1
$\frac{a_1}{a_2} = \frac{b_1}{b_2} \neq \frac{c_1}{c_2}$ (condition for inconsistency)	1
$\Rightarrow \frac{3}{(2k-1)} = \frac{1}{(k-1)} \neq \frac{1}{2k+1} ;$	
$\Rightarrow k = 2$	
$a_n = 6n + 2$	1
$\Rightarrow a_1 = 6 + 2 = 8$	
$\Rightarrow a_2 = 6 \times 2 + 2 = 14$	
$\therefore \ d = a_2 - a_1 = 14 - 8 = 6$	
If $sec\theta - cosec2\theta = 0$	1
$\Rightarrow sec\theta = co\sec 2\theta$	
$\Rightarrow sec\theta = \sec(90^\circ - 2\theta)$	
$\Rightarrow \theta = 90^{\circ} - 2\theta$	
$\Rightarrow 3\theta = 90^{\circ}$	
$\Rightarrow \theta = 30^{\circ}$	
$\Rightarrow \therefore \ \sin^2 30^\circ + \ \tan^2 30^\circ = \left(\frac{1}{2}\right)^2 + \left(\frac{1}{\sqrt{3}}\right)^2 = \frac{1}{4} + \frac{1}{3} = \frac{7}{12}$	
	MARKING SCHEME - SAMPLE PAPER-1 HALF YEARLY EXAMINATION, 2018-19 MATHEMATICS CLASS – X SECTION – AAfter 4 places of decimal. (0.0043)P(x)=k{x² + 2ax + (a² - b²)} $a_{a_2} = b_1 \neq c_1 \pmod{1000}$ (condition for inconsistency) $\Rightarrow \frac{a_1}{a_2} = b_1 \neq c_1 \pmod{1000}$ $\Rightarrow (2k-1) = (1k-1) \neq \frac{1}{2k+1}$; $\Rightarrow k = 2$ $a_n = 6n + 2$ $\Rightarrow a_1 = 6 + 2 = 8$ $\Rightarrow a_2 = 6 \times 2 + 2 = 14$ $\therefore d = a_2 - a_1 = 14 - 8 = 6$ If sec0 - cosec 20 = 0 $\Rightarrow sec0 = cosec 20$ $\Rightarrow sec0 = sec(90^\circ - 20)$ $\Rightarrow \theta = 90^\circ - 2\theta$ $\Rightarrow 30^\circ$ $\Rightarrow \therefore sin^2 30^\circ + tan^2 30^\circ = (\frac{1}{2})^2 + (\frac{1}{\sqrt{3}})^2 = \frac{1}{4} + \frac{1}{3} = \frac{7}{12}$

6	2018 is a non-leap year =365 days=52 weeks+1 day (the last day of the year);	1
	52 weeks means every day of the week is coming 52 times, but whichever day of the week will fall	
	on the last day, will become the only day which will be coming 53 times in the year.	
	That last day of the year has seven possibilities (outcomes) = {S, M, T, W, Th., F, Sat}	
	: Probability(53 Sundays in the year) = $\frac{1}{7}$;	
	<u>SECTION – B</u>	
7	No. of animals in each trip =HCF(105,175) =35	2
8	Putting $x = -5$ in the equation $2x^2 + px - 15 = 0$, we get $p = 7$	2
	: $p(x^2 + x) + k = 0$ becomes $7x^2 + 7x + k = 0$	
	For equal roots, $b^2 - 4ac = 0$	
	$\therefore k = \frac{7}{4}$	
9	As diagonals AC and BD of the parallelogram bisect each other at O.	2
	So, O the midpoint of both AC and BD	
	$\left(\frac{-2+4}{2}, \frac{-1+b}{2}\right) = \left(\frac{a+1}{2}, \frac{0+2}{2}\right)$	
	$\therefore a = 1 and b = 3$	
10	$\frac{\cos^{2}20^{\circ} + \cos^{2}70^{\circ}}{\sec^{2}50^{\circ} - \cot^{2}40^{\circ}} + 2\csc^{2}58^{\circ} - 2\cot58^{\circ}\tan32^{\circ} - 4\tan13^{\circ}\tan37^{\circ}\tan45^{\circ}\tan53^{\circ}\tan77^{\circ}$ $= \frac{\sin^{2}70^{\circ} + \cos^{2}70^{\circ}}{\sec^{2}50^{\circ} - \tan^{2}50^{\circ}} + 2(\csc^{2}58^{\circ} - \cot^{2}58^{\circ}) - 4\tan13^{\circ}\tan37^{\circ}\tan45^{\circ}\cot53^{\circ}\cot13^{\circ}$	2
	$= \frac{1}{1} + 2(1) - 4 \times 1 \times 1 \times 1$ =1+2 - 4= -1	
11	Find the mean of the following distribution	2
·		

Page 2 of 12

		<i>x_i</i> 4 6 9 10 15 Total								
		f_i	5	10	10	7	8	40		
		$x_i f_i$	20	60	90	70	120	360		
		$mean = \frac{\sum f_i x_i}{\sum f_i} = \frac{360}{40} = 9$								
1	2	No. of cards = $83 - 31 + 1 = 53$							2	
		(i) P(getting an even No. card)= $\frac{26}{53}$								
		(ii) P(getting a perfect cube No. card)= $\frac{1}{53}$								
	<u>SECTION – C</u>									
1	3 Let a be any positive no, and $b = 5$.							3		
		So, by Euclid's division algorithm,								
		$a = 5q + r$, where $0 \le r < 5$								
		when $r = 0$, $a = 5q$ $\Rightarrow a^2 = (5a)^2 = 25a^2 = 5(5a^2) = 5m$	haram -	$-5a^{2}$						
		$\Rightarrow u = (5q) = 25q = 5(5q) = 5m, w$ when $r = 1$, $q = 5q + 1 \Rightarrow q^2 = (5q)$	$\frac{1}{2} - \frac{1}{2}$	-5q	10a 1					
		when $r = 1$; $a = 5q + 1 \implies a^2 = (5q + 1)^2$	$(1)^{-} = 2$	259- ·	+ 10q + 1	$-5a^2$	Ja			
		u = 5(3q + 2q) when $r = -2$: $a = 5a + 2 \implies a^2 = (5a + 2)$	$(-7)^2 = 3$	$25a^2$.	+ 20a + 4	- <i>34</i> -	29,			
		when $r = 2$, $u = 3q + 2 \implies u^{-1} = (3q + 2)$ $a = 5(5a^2 + 4a)$	+ 4 = 5	5m +	4: where m	$= 5a^{2} +$	4 <i>a</i>			
		similarly for other values for r, we find $5m+1$ or $5m+4$. [we can also use q in p	that the blace of r	squar n , wh	re of any posi tich is simply	tive integ represen	er is of ting a p	the form 5m or ositive integer.]		
1	4	If α and β are the zeroes of a quadratic polynomial $P(x) = kx^2 + 4x + 4$. Then find the value of k if it is given that $\alpha^2 + \beta^2 = 24$.						3		
		$=\alpha^2+\beta^2=24$								
		$= (\alpha + \beta)^2 - 2\alpha\beta = 24$								
		$=(\frac{-4}{k})^2 - 2\frac{4}{k} = 24$								
		$=(\frac{-4}{k})^2-2\frac{4}{k}=24$								
		$=\frac{16}{12}-\frac{8}{12}=24$								
		$k^2 = k$ $-\frac{2}{2} - \frac{1}{2} = 3$								
		$k^{2} k = 0$ = $3k^{2} + k - 2 = 0$								
		= (k + 1)(2k - 2) = 0								

Page 3 of 12

Page 4 of 12

Page 6 of 12

$$x = \frac{y+4}{\sqrt{3}} \dots \dots \dots \dots \dots (eq.2)$$
from eq. 1 and eq. 2; $\sqrt{3}y = \frac{y+4}{\sqrt{3}}$
 $3y = y+4$
 $y = 2;$
height of the balloon is $BH = y+4+2 = 2+6 = 8 m$
21 Median = 32.5
So, median class = 30 - 40
$$\boxed{\frac{Class interval \ 0-10 \ 10-20 \ 20-30 \ 30-40 \ 40-50 \ 50-60 \ 60-70 \ Total}{frequency \ f_1 \ 5 \ 9 \ 12 \ f_2 \ 3 \ 2 \ 40}}$$
 $cf \ f_1 \ 5+ \ 14+ \ 26+ \ 26+ \ 29+ \ 31+ \ 31+ \ f_2 \$

22	Total care	1s = 52 - 4 = 48	
	(i)	Face cards = $3x4 = 12$	
		Required Probability = $\frac{12}{48} = \frac{1}{4}$	3
	(ii)	Kings = 4 (including 2 of reds); Red cards = $12+12=24$ (excluding 2 red aces)	
		So, cards which are either king or a red card = $4+24-2=26$	
		Required Probability = $\frac{26}{48} = \frac{13}{24}$	
	(iii)	Queens = 4; Black cards = $12+12=24$ (excluding 2 black aces)	
		So no. of cards which are neither a queen nor a black card= $48 - 4 - 24 = 20$	
		Required Probability = $\frac{20}{48} = \frac{13}{24}$	
		SECTION – D	
23	$\sqrt{\frac{5}{3}}$ and	$d - \sqrt{\frac{5}{3}}$ are the zeroes	4
	$\therefore \left(x^2 - \frac{x^2}{2}\right)$	$5 \ will be a factor of 3x^4 + 6x^3 - 2x^2 - 10x - 5$	
		3) while be a factor of $5x + 6x + 2x + 16x + 5$	
		(5)	
	on divid	$ling 3x^{4} + 6x^{3} - 2x^{2} - 10x - 5 by \left(x^{2} - \frac{5}{3}\right) \text{ we get quotient} = 3x^{2} + 6x + 3$	
	$3x^2 + 6$	x + 3 = (3x + 3) (x + 1)	
	· other	two zeroes are -1 and -1	
	oiner	$\frac{1}{1}$	
24	and speed	of boat in still water is x km/h d of stream is y km/hr	4
	speed of b	boat upstream = $(x-y)$ km/h	
	speed of b	boat downstream = $(x+y)$ km/h	
	$\therefore \frac{30}{30} +$	$\frac{40}{2} = 8$; $\frac{36}{2} + \frac{32}{2} = 8$	
	x - y	$x + y \qquad x - y \qquad x + y$	
		1 . 1 .	
	$\begin{bmatrix} taking - \\ x \end{bmatrix}$	$\frac{-y}{-y} = a \qquad and \frac{-y}{x+y} = b$	
	We get,		
	30a+40b	=8(i) a+32b=8 (ii)	
	<i>unu</i> , <i>30</i>	$u + 320 = 0 \dots \dots \dots (u)$	
	Solving w	e get:	

$$a = \frac{2}{15}$$
 and $b = \frac{1}{10}$ $\therefore \frac{1}{x-y} = \frac{2}{15}$ and $\frac{1}{x+y} = \frac{1}{10}$ $\therefore x-y = \frac{15}{2}$ and $x+y = 10$ solving we get: $x = \frac{35}{4}$ km/h and $y = \frac{5}{4}$ km/h4**25** Let volume of pool = V4Let time taken by first pipe to fill the pool = x hrs.
time taken by first pipe to fill the pool = $x - 4$ hrs.4In one hour first pipe can fill = $\frac{V}{x+5}$ part of the pool
In one hour second pipe can fill = $\frac{V}{x+5}$ part of the pool
According to question.1 $\frac{V}{x+5} + \frac{V}{x} = \frac{V}{x-4}$
($2x+5$) ($x-4$) = ($x+5$) x
 $x^2 - 8x - 20 = 0$
 $x = 10$ or $x = -2(neglected)$ 5**26** Let the numbers are :4

Page 10 of 12

$$\angle BDA = 45^{\circ}$$

$$\angle BCA = 30^{\circ}$$
Distance travelled in 15 seconds = DC

$$InABAD,$$

$$\tan 45^{\circ} = \frac{AB}{AD} = \frac{3000}{AD}$$

$$AD = 3000m$$

$$InABAC,$$

$$\tan 30^{\circ} = \frac{AB}{AC} = \frac{3000}{AC}$$

$$AC = 3000\sqrt{3}m$$

$$\therefore CD = AC - AD = 3000(\sqrt{3} - 1)m$$

$$\therefore speed = \frac{3000(\sqrt{3} - 1)m}{15} = 146 \text{ m/sec}$$

C.I.	f		Less than cf		More than cf
400 - 450	20	Less than 450	20	More than or equal to 400	230
450-500	35	Less than 500	55	More than or equal to 450	210
500-550	40	Less than 550	95	More than or equal to 500	175
550-600	32	Less than 600	127	More than or equal to 550	135
600-650	24	Less than 650	151	More than or equal to 600	103
650-700	27	Less than 700	178	More than or equal to 650	79
700-750	18	Less than 750	196	More than or equal to 700	52
750-800	34	Less than 800	230	More than or equal to 750	34
Total	230				

-000000-