SAMPLE PAPER-1
 HALF YEARLY EXAMINATION, 2018-19
 MATHEMATICS
 CLASS - X
 Maximum Marks : 80

Time Allowed : 3hrs
Name \qquad

Sign of Invigilator

\qquad

General Instructions :

1. The question paper comprises of thirty questions divided into four Sections- A, B, C and D.
2. Section A comprises of six questions Q1 to Q6 of one mark each.
3. Section B comprises of six questions Q7 to Q12 of two marks each.
4. Section C comprises of ten questions Q13 to Q22 of three marks each.
5. Section D comprises of eight questions Q23 to Q30 of four marks each.
6. All questions are compulsory.
7. Use of calculators is not permitted.

SECTION - A

1 The decimal expansion of the rational number $\frac{43}{2^{4} \times 5^{3}}$ will terminate after how many places of decimals?

2 If $a+b$ and $a-b$ are the two zeroes of a polynomial, then find that polynomial.
3 Find the values of k, such that the following pair of linear equations is inconsistent $3 x+y=1$ and $(2 k-1) x+(k-1) y=2 k+1$.

4 The $n^{\text {th }}$ term of an A.P. is $6 n+2$. Find the common difference.
5 If $\sec \theta-\operatorname{cosec} 2 \theta=0$ then find the value of $\sin ^{2} \theta+\tan ^{2} \theta$.
6 Find the probability of 53 Sundays in the year 2018.

SECTION - B

7105 goats and 175 cows have to be taken across the river. There is only one boat which will have to make up many trips to do so. If boatman want to carry all the animals in least number of trips and each trip must have equal number of animals, then find the number of animals in each trip he can carry on his boat.

8 If -5 is a root of the quadratic equation $2 x^{2}+p x-15=0$ and the quadratic equation $p\left(x^{2}+x\right)+k=0$ has equal roots, find the value of k .

9 If $\mathrm{A}(-2,-1), B(a, 0), C(4, b)$ and $D(1,2)$ are are the vertices of a parallelogram ABCD , find the values of a and b.

10 Evaluate $\frac{\cos ^{2} 20^{\circ}+\cos ^{2} 70^{\circ}}{\sec ^{2} 50^{\circ}-\cot ^{2} 40^{\circ}}+2 \operatorname{cosec}^{2} 58^{\circ}-2 \cot 58^{\circ} \tan 32^{\circ}-4 \tan 13^{\circ} \tan 37^{\circ} \tan 45^{\circ} \tan 53^{\circ} \tan 77^{\circ}$
11 Find the mean of the following distribution

x_{i}	4	6	9	10	15
f_{i}	5	10	10	7	8

12 Cards numbered from 31 to 83 are kept in a box. If a card is drawn at random from the box, find the probability that the number on the drawn card is
(i) An even number
(ii) A perfect cube number.

SECTION - C

13 Prove that the square of any positive integer is of the form $5 q, 5 q+1$ and $5 q+4$, for some integer q.

14 If α and β are the zeroes of a quadratic polynomial $P(x)=k x^{2}+4 x+4$.Then find the value of k if it is given that $\alpha^{2}+\beta^{2}=24$.

15 Solve the pair of linear equations graphically $x-y=1$ and $2 x+y=8$. Shade the area bounded by the graphs of the given equations and the Y -axis. Also determine its area.

16 Solve the following quadratic equation $9 x^{2}-9(a+b) x+\left(2 a^{2}+5 a b+2 b^{2}\right)=0$.
17 Find the middle term of the A.P. 7, 10, $13, \ldots ., 187$.

18 Find the coordinates of the points which divides the line segment joining the points $\mathrm{A}(2,-2)$ and B $(10,8)$ into four equal parts.

19 Prove that $(\sin A+\operatorname{cosec} A)^{2}+(\cos A+\sec A)^{2}=7+\tan ^{2} A+\cot ^{2} A$.
20 The lower window of a house is at a height of 2 m above the ground and its upper window is 4 m vertically above the lower window. At certain instant, the angles of elevation of a balloon from these windows are observed to be 60 and 30 respectively. Find the height of the balloon above the ground.

21 If the median of the following frequency distribution is 32.5 , find the missing frequencies.

Class interval	$0-10$	$10-20$	$20-30$	$30-40$	$40-50$	$50-60$	$60-70$	Total
frequency	f_{1}	5	9	12	f_{2}	3	2	40

22 If all the aces are removed from a deck of playing cards and then from the remaining cards if one card is picked at random. Then find the probability of getting:
(i) A face card.
(ii) Either a king or a red card.
(iii) Neither a queen nor a black card.

SECTION - D

23 Obtain all the zeroes of a polynomial $3 x^{4}+6 x^{3}-2 x^{2}-10 x-5$, if two of its zeroes are $\sqrt{\frac{5}{3}}$ and $-\sqrt{\frac{5}{3}}$.

24 A boat goes 30 km upstream and 40 km downstream in 8 hours. It can go 36 km upstream and 32 km downstream in the same time. Find the speed of the boat in still water and the speed of the stream.

25 A swimming pool is filled with three pipes with uniform flow. The first two pipes operating simultaneously fill the pool in the same time during which the pool is filled by the third pipe alone. The second pipe fills the pool five hours faster than the first pipe and four hours slower than the third pipe. Find the time required by each pipe to fill the pool separately.

26 The sum of the three numbers in A.P. is 12 and the sum of their cubes is 288 . Find the numbers.
27 If the coordinates of the mid points of the sides of a triangle are $(1,1),(2,-3))$ and $(3,4)$.Find the coordinate of all the vertices of the triangle and hence find the centroid of the triangle.

28 Prove that $\left[\frac{1+\sin A-\cos A}{1+\sin A+\cos A}\right]^{2}=\frac{1-\cos A}{1+\cos A}$.
29 The angle of elevation of an aeroplane from a point on the ground is 45°. After a flight of 15 seconds, the elevation changes to 30°. If the aeroplane is flying at a height of 3000 meters, find the speed of the aeroplane.

30 The frequency distribution of score obtained by 230 candidates in a medical entrance test is as follows:

Scores	$400-$ 450	$450-$ 500	$500-$ 550	$550-$ 600	$600-$ 650	$650-$ 700	$700-$ 750	$750-$ 800
f_{i}	20	35	40	32	24	27	18	34

Construct a less than type as well as a more than type cumulative frequency curves, and hence obtain the median rainfall.

Page 4 of 4
Download from : https://jsuniltutorial.weebly.com/
$\left.\begin{array}{|l|l|l|}\hline & \begin{array}{l}\text { Gurupul } \\ \text { MARKING SCHEME - SAMPLE PAPER-1 } \\ \text { HALF YEARLY EXAMINATION, 2018-19 } \\ \text { MATHEMATICS }\end{array} \\ \text { CLASS - X }\end{array}\right]$

Page 1 of $\mathbf{1 2}$

6	2018 is a non-leap year $=365$ days=52 weeks+1 day (the last day of the year); 52 weeks means every day of the week is coming 52 times, but whichever day of the week will fall on the last day, will become the only day which will be coming 53 times in the year. That last day of the year has seven possibilities (outcomes) $=\{\mathrm{S}, \mathrm{M}, \mathrm{T}, \mathrm{W}, \mathrm{Th} ., \mathrm{F}, \mathrm{Sat}\}$ \therefore Probability(53 Sundays in the year) $=\frac{1}{7}$;	1
	SECTION - B	
7	No. of animals in each trip $=\operatorname{HCF}(105,175)=35$	2
8	Putting $\mathrm{x}=-5$ in the equation $2 x^{2}+p x-15=0$, we get $p=7$ $\therefore p\left(x^{2}+x\right)+k=0 \quad \text { becomes } \quad 7 x^{2}+7 x+k=0$ For equal roots, $\quad b^{2}-4 a c=0$ $\therefore k=\frac{7}{4}$	2
9	As diagonals AC and BD of the parallelogram bisect each other at O . So, O the midpoint of both AC and BD $\left(\frac{-2+4}{2}, \frac{-1+b}{2}\right)=\left(\frac{a+1}{2}, \frac{0+2}{2}\right)$ $\therefore a=1$ and $b=3$	2
10	$\begin{aligned} & \frac{\cos ^{2} 20^{\circ}+\cos ^{2} 70^{\circ}}{\sec ^{2} 50^{\circ}-\cot ^{2} 40^{\circ}}+2 \operatorname{cosec}^{2} 58^{\circ}-2 \cot 58^{\circ} \tan 32^{\circ}-4 \tan 13^{\circ} \tan 37^{\circ} \tan 45^{\circ} \tan 53^{\circ} \tan ^{\circ} 77^{\circ} \\ & =\frac{\sin ^{2} 70^{\circ}+\cos ^{2} 70^{\circ}}{\sec ^{2} 50^{\circ}-\tan ^{2} 50^{\circ}}+2\left(\operatorname{cosec}^{2} 58^{\circ}-\cot ^{2} 58^{\circ}\right)-4 \tan 13^{\circ} \tan 37^{\circ} \tan 45^{\circ} \cot 53^{\circ} \cot 13^{\circ} \\ & =\frac{1}{1}+2(1)-4 \times 1 \times 1 \times 1 \\ & =1+2-4=-1 \end{aligned}$	2
11	Find the mean of the following distribution	2

	either $(k+1)=0$ or $(3 k-2)=0$ either $k=-1$ or $k=\frac{2}{3}$ Type equation here.	
15	 Solution is $x=3$ and $y=2$. Area of the triangle $\mathrm{ABC}=\frac{1}{2} \times B C \times A D=\frac{1}{2} \times 9 \times 3=13.5$ sq.unit	3
16	Solve the following quadratic equation $9 x^{2}-9(a+b) x+\left(2 a^{2}+5 a b+2 b^{2}\right)=0$. $\begin{gathered} \text { using quadratic formula: } x=\frac{-B \pm \sqrt{B^{2}-4 A C}}{2 A} \\ \Rightarrow x=\frac{-\{-9(a+b))\} \pm \sqrt{\{-9(a+b))\}^{2}-4 \times 9 \times\left(2 a^{2}+5 a b+2 b^{2}\right)}}{2 \times 9} \\ \Rightarrow x=\frac{9 a+9 b \pm \sqrt{\left.81 a^{2}+81 b^{2}+162 a b-72 a^{2}-180 a b-72 b^{2}\right)}}{18} \\ \Rightarrow x=\frac{9 a+9 b \pm \sqrt{\left(9 a^{2}+9 b^{2}-18 a b\right)}}{18} \\ \Rightarrow x=\frac{9 a+9 b \pm \sqrt{(3 a-3 b)^{2}}}{18} \end{gathered}$	3

Page 4 of 12

	$\Rightarrow x=\frac{(9 a+9 b) \pm(3 a-3 b)}{18}$ either $x=\frac{(2 a+b)}{3}$ or $x=\frac{(a+2 b)}{3}$	
17	Find the middle term of the A.P. 7, 10, $13, \ldots, 187$. $\begin{gathered} \qquad \begin{array}{c} a=7, d=10-7=3 \text {, let } a_{n}=187 \\ a+(n-1) d=187 \\ 7+(n-1) 3=187 \\ 3 n+4=187 \\ n=61 \end{array} \\ \text { middle term }=\frac{n+1}{2}=\frac{61+1}{2}=\frac{62}{2}=31^{\text {st }} \text { term } \\ \text { middle term is } a_{31}=a+(31-1) d=7+30 \times 3=97 \end{gathered}$	3
18	Find the coordinates of the points which divides the line segment joining the points $\mathrm{A}(2,-2)$ and B $(10,8)$ into four equal parts. Using mid point formula for AB ; coordinates of $\mathrm{D}\left(\frac{2+10}{2}, \frac{-2+8}{2}\right)=D(6,3)$ Using mid point formula for AD ; coordinates of $\mathrm{C}\left(\frac{2+6}{2}, \frac{-2+3}{2}\right)=C\left(4, \frac{1}{2}\right)$ Using mid point formula for $D B$; coordinates of $E\left(\frac{6+10}{2}, \frac{3+8}{2}\right)=D\left(8, \frac{11}{2}\right)$	3

Page 5 of 12

19 Prove that $(\sin A+\operatorname{cosec} A)^{2}+(\cos A+\sec A)^{2}=7+\tan ^{2} A+\cot ^{2} A$.

$$
\begin{gathered}
\text { L.H.S. }=(\sin A+\operatorname{cosec} A)^{2}+(\cos A+\sec A)^{2} \\
=\sin ^{2} A+\operatorname{cosec}^{2} A+2 \sin A \cdot \operatorname{cosec} A+\cos ^{2} A+\sec ^{2} A+2 \cos A \cdot \sec A \\
=\left(\sin ^{2} A+\cos ^{2} A\right)+\left(1+\cot ^{2} A\right)+2 \sin A \cdot \frac{1}{\sin A}+\left(1+\tan ^{2} A\right)+2 \cos A \cdot \frac{1}{\cos A} \\
=1+\left(1+\cot ^{2} A\right)+2+\left(1+\tan ^{2} A\right)+2 \\
=7+\tan ^{2} A+\cot ^{2} A
\end{gathered}
$$

20 The lower window of a house is at a height of 2 m above the ground and its upper window is 4 m vertically above the lower window. At certain instant, the angles of elevation of a balloon from these windows are observed to be 60 and 30 respectively. Find the height of the balloon above the ground.

in the $\perp \triangle B V U ; \quad \tan 30^{\circ}=\frac{B V}{U V}$

$$
\begin{gather*}
\frac{1}{\sqrt{3}}=\frac{y}{x} \\
x=\sqrt{3} y \ldots \ldots \ldots \ldots \ldots \tag{eq.1}
\end{gather*}
$$

in the $\perp \triangle B M L ; \quad \tan 60^{\circ}=\frac{B M}{L M}$

$$
\frac{\sqrt{3}}{1}=\frac{y+4}{x}
$$

Page 7 of 12

22	Total cards left $=52-4=48$ (i) Face cards $=3 \times 4=12$ $\text { Required Probability }=\frac{12}{48}=\frac{1}{4}$ (ii) Kings $=4$ (including 2 of reds); Red cards $=12+12=24$ (excluding 2 red aces) So, cards which are either king or a red card $=4+24-2=26$ $\text { Required Probability }=\frac{26}{48}=\frac{13}{24}$ (iii) Queens $=4 ;$ Black cards $=12+12=24$ (excluding 2 black aces) So no. of cards which are neither a queen nor a black card=48-4-24=20 Required Probability $=\frac{26}{48}=\frac{13}{24}$	3
	SECTION - D	
23	$\sqrt{\frac{5}{3}}$ and $-\sqrt{\frac{5}{3}}$ are the zeroes $\therefore\left(x^{2}-\frac{5}{3}\right)$ will be a factor of $3 x^{4}+6 x^{3}-2 x^{2}-10 x-5$ on dividing $3 x^{4}+6 x^{3}-2 x^{2}-10 x-5$ by $\left(x^{2}-\frac{5}{3}\right)$ we get quotient $=3 x^{2}+6 x+3$ $3 x^{2}+6 x+3=(3 x+3)(x+1)$ \therefore other two zeroes are -1 and -1	4
24	Let speed of boat in still water is $x \mathrm{~km} / \mathrm{h}$ and speed of stream is $y \mathrm{~km} / \mathrm{hr}$ speed of boat upstream $=(x-y) k m / h$ speed of boat downstream $=(x+y) \mathrm{km} / \mathrm{h}$ $\therefore \frac{30}{x-y}+\frac{40}{x+y}=8 ; \frac{36}{x-y}+\frac{32}{x+y}=8$ $\text { taking } \frac{1}{x-y}=a \quad \text { and } \frac{1}{x+y}=b$ We get, $30 a+40 b=8 \ldots \ldots \ldots .(i)$ $\text { and, } \quad 36 a+32 b=8 \ldots \ldots \ldots(i i)$ Solving we get:	4

| $a=\frac{2}{15}$ and $b=\frac{1}{10}$ | |
| :--- | :--- | :--- |
| $\therefore \frac{1}{x-y}=\frac{2}{15} \quad$ and $\frac{1}{x+y}=\frac{1}{10}$ | |
| $\therefore x-y=\frac{15}{2} \quad$ and $x+y=10$ | |
| solving we get $: x=\frac{35}{4}$ km/ h and $y=\frac{5}{4} k m / h$ | |
| $\mathbf{2 5}$ | Let volume of pool $=\mathrm{V}$
 Let time taken by second pipe to fill the pool $=x$ hrs.
 time taken by first pipe to fill the pool $=x+5$ hrs.
 time taken by third pipe to fill the pool $=x-4$ hrs.
 In one hour first pipe can fill $=\frac{V}{x+5}$ part of the pool
 In one hour second pipe can fill $=\frac{V}{x}$ part of the pool
 In one hour third pipe can fill $=\frac{V}{x-4}$ part of the pool
 According to question,
 Let the numbers are :
 $\frac{V}{x+5}+\frac{V}{x}=\frac{V}{x-4}$
 $(2 x+5)(x-4)=(x+5) x$
 $x-8 x-20=0$
 $x=10$ or $x=-2(n e g l e c t e d ~$ |
| So, time taken by first pipe $=15$ hrs.
 time taken by second pipe $=10$ hrs.
 and time taken by third pipe $=6$ hrs. | 4 |

	$\begin{aligned} & a-d, a, a+d \\ & a-d+a+a+d=12 \\ & a=4 \end{aligned}$ $\begin{aligned} & \text { Now, }(4-d)^{3}+4^{3}+(4+d)^{3}=288 \\ & d=2 \end{aligned}$ \therefore the numbers are: 2,4 and 6	
27	Let $\mathrm{P}(1,1), \mathrm{Q}(2,-3)$ and $\mathrm{R}(3,4)$ are the mid points of AB, BC and CA respectively. let $A=\left(x_{1}, y_{1}\right), B\left(x_{2}, y_{2}\right)$ and $C\left(x_{3}, y_{3}\right)$ taking P as the mid point of $B C$ $\begin{aligned} & P(1,1)=\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right) \\ & \Rightarrow x_{1}+x_{2}=1 \quad \text { and } \quad y_{1}+y_{2}=2 \end{aligned}$ similarly, we get: $\begin{array}{lc} x_{2}+x_{3}=4 & y_{2}+y_{3}=-6 \\ x_{1}+x_{3}=6 & y_{1}+y_{3}=8 \\ \text { Centroid }=\left(\frac{x_{1}+x_{2}+x_{3}}{3}, \frac{y_{1}+y_{2}+y_{3}}{3}\right)=\left(2, \frac{2}{3}\right) \end{array}$	4
28	$\begin{aligned} & \text { LHS }=\left(\frac{1+\sin A-\cos A}{1+\sin A+\cos A} \times \frac{1+\sin A-\cos A}{1+\sin A-\cos A}\right)^{2} \\ & =\left(\frac{1+\sin ^{2} A+\cos ^{2} A+2 \sin A-2 \sin A \cos A-2 \cos A}{1-\cos ^{2} A+\sin ^{2} A+2 \sin A}\right)^{2} \\ & =\left(\frac{2+2 \sin A-2 \sin A \cos A-2 \cos A}{\sin ^{2} A+\sin ^{2} A+2 \sin A}\right)^{2}=\left[\frac{(1+\sin A)(2-2 \cos A)}{2 \sin A(\sin A+1)}\right]^{2}=\left[\left(\frac{1-\cos A}{\sin A}\right)\right]^{2} \\ & =\frac{(1-\cos A)(1-\cos A)}{(1-\cos A)(1+\cos A)}=\frac{(1-\cos A)}{(1+\cos A)}=R H S \end{aligned}$	4
29	$\mathrm{AB}=3000 \mathrm{~m}$ (height of the aeroplane from the ground)	4

$\angle \mathrm{BDA}=45^{\circ}$
$\angle \mathrm{BCA}=30^{\circ}$
Distance travelled in 15 seconds $=\mathrm{DC}$
In $\triangle B A D$,
$\tan 45^{\circ}=\frac{A B}{A D}=\frac{3000}{A D}$
$A D=3000 \mathrm{~m}$
In $\triangle B A C$,
$\tan 30^{\circ}=\frac{A B}{A C}=\frac{3000}{A C}$
$A C=3000 \sqrt{3} \mathrm{~m}$
$\therefore C D=A C-A D=3000(\sqrt{3}-1) m$
\therefore speed $=\frac{3000(\sqrt{3}-1) m}{15}=146 \mathrm{~m} / \mathrm{sec}$

30	C.I.	f		Less than cf		More than cf	4
	400-450	20	Less than 450	20	More than or equal to 400	230	
	450-500	35	Less than 500	55	More than or equal to 450	210	
	500-550	40	Less than 550	95	More than or equal to 500	175	
	550-600	32	Less than 600	127	More than or equal to 550	135	
	600-650	24	Less than 650	151	More than or equal to 600	103	
	650-700	27	Less than 700	178	More than or equal to 650	79	
	700-750	18	Less than 750	196	More than or equal to 700	52	
	750-800	34	Less than 800	230	More than or equal to 750	34	
	Total	230					
	After plotting both the ogives on a graph, the point where the meet will be the median. Median = 581(approx.)						

-o000000o-

Page 12 of 12
Download from : https://jsuniltutorial.weebly.com/

