

2

SAMPLE PAPER 2 HALF YEARLY EXAMINATION, 2018-19

MATHEMATICS

Time Allowed : 3hrs	CLASS – X	Maximum Marks : 80	
Name	S	ign of Invigilator	
General Instructions :			
1. The question paper comprises of t	hirty questions divided into fo	ur Sections- A, B, C and D.	
2. Section A comprises of six question	ons Q1 to Q6 of one mark each	1.	
3. Section B comprises of six question	ons Q7 to Q12 of two marks ea	uch.	
4. Section C comprises of ten questi	ons Q13 to Q22 of three mark	s each.	
5. Section D comprises of eight ques	stions Q23 to Q30 of four mar	ks each.	
6. All questions are compulsory.			
7. Use of calculators is not permitted	d.		
	<u>SECTION – A</u>		
'a' and 'b' are the two positive int factor of b is 5. Then find the least		ne factor of a is 3 and the least prime	1
If 3 and 5 are the two zeroes of a p	polynomial, then find that po	lynomial.]
Find the values of k, such that the have infinitely many solutions.	pair of linear equations 4 <i>y</i> =	= kx - 3 and $6x - 12y = 9$ will]
For what value of $p \text{ are } 2p + 1, 1$	3 and 5p - 3 forms an A.P]
If $cos\theta - sin2\theta = 0$ then find the	e value of $tan^2\theta + cot^2\theta$.		1
Two friends were born in the year same day.	of 2000. What is the probab	ility that their birthday falls on the]
	SECTION – B		

<u>SECTION – B</u>

- Two tankers contain 620 litres and 840 litres of diesel respectively. Find the maximum capacity of a 7 2 container which can measure the diesel of both the tankers in exact number of times.
- Solve the equation for $x: \sqrt{2x+9} + x = 13$. 8 2
- 9 Prove that the points (a, 0), (0, b) and (1, 1) are collinear if $\frac{1}{a} + \frac{1}{b} = 1$. 2

 $\text{Evaluate} \; \frac{sec 37^{\circ}.cosec 53^{\circ}-tan 37^{\circ}.cot 53^{\circ}+sin^{2}55^{\circ}+sin^{2}35^{\circ}}{tan 10^{\circ}.tan 20^{\circ}.tan 60^{\circ}.tan 70^{\circ}.tan 80^{\circ}}.$ 10

11 If the median of the following distribution is 24, find the value of f.

Class interval	0-10	10-20	20-30	30-40	40 - 50
frequencies	5	25	f	18	7

- 12 Cards numbered from 11 to 60 are kept in a box. If a card is drawn at random from the box, find the 2 probability that the number on the drawn card is
 - (i) A prime number
 - (ii) A perfect square number.

<u>SECTION – C</u>

- 13 Prove that $\sqrt{3} \sqrt{2}$ is an irrational number.
- 14 If α and β are the zeroes of a quadratic polynomial $P(x) = 2x^2 + 5x + k$. Then find the value of k 3 if it is given that $\alpha^2 + \beta^2 + \alpha\beta = \frac{21}{4}$.
- 15 Solve the pair of linear equations 2(ax by) + (a + 4b) = 0; and 2(bx + ay) + (b 4a) = 0. 3
- 16 If the roots of the equation $(a b)x^2 (b c)x + (c a) = 0$ are equal, prove that 2a = b + c. 3
- 17 Find the common difference of an A.P. whose first term is 5 and the sum of its first four terms is half the sum of the next four terms.
- 18 Find the coordinates of the points of trisection of a line segment joining the points A (2, -2) and 3 B (-7,4).
- 19 Prove that $(sinA + secA)^2 + (cosA + cosecA)^2 = (1 + secA. cosecA)^2$. 3
- 20 The angle of depression of the top and bottom of a 50 *m* high building from the top of a tower are 45° and 60° respectively. Find the height of the tower and the horizontal distance between the tower and the building. (use $\sqrt{3} = 1.73$)
- 21 The following frequency distribution gives the monthly consumption of electricity of 68 consumers 3 of a locality. Find the median consumption of electricity.

Monthly consumption (in units)	65-85	85-105	105-125	125-145	145-165	165-185	185-205
Number of consumers	4	5	13	20	14	8	4

3

- 22 If all the face cards are removed from a deck of playing cards and then from the remaining cards if 3 one card is picked at random. Then find the probability of getting:
 - (i) A card with even number on it
 - (ii) Either an ace or a red card.
 - (iii) Neither a club nor an ace.

<u>SECTION – D</u>

- 23 Obtain all the zeroes of a polynomial $2x^4 9x^3 + 5x^2 + 3x 1$, if two of its zeroes are $2 + \sqrt{3}$ 4 and $2 \sqrt{3}$.
- 24 Joseph travels 370 km partly by train and partly by car. If he covers 250 km by train and the rest by car, it takes him 4 hours. But, if he travels 130 km by train and the rest by car, he takes 18 minutes longer. Find the speed of the train and that of the car.
- 25 Two water taps together can fill a tank in $11\frac{1}{9}$ minutes. If one pipe takes 5 minutes more than other 4 to fill the tank separately, find the time in which each pipe would fill the tank separately.
- **26** Find the sum of the following series:

$$5 + (-41) + 9 + (-39) + 13 + (-37) + 17 \dots + (-5) + 81 + (-3)$$

- 27 Prove that, the quadrilateral formed by joining the four points A(2, -1), B(3,4), C(-2,3) and 4 D(-3, -2), is a rhombus but not a square. Hence find the area of the rhombus so formed.
- 28 If secA + tanA = p then prove that $sinA = \frac{p^2 1}{p^2 + 1}$.
- 29 The angle of elevation of a cloud from a point 60 m above a lake is 30° and the angle of depression 4 of the reflection of the cloud in the lake is 60°. Find the height of the cloud.
- **30** The annual rainfall record of a city for 66 days is given in the following table:

Rainfall (in cm)	0-10	10-20	20-30	30-40	40-50	50-60
Number of days	22	10	8	15	5	6

Construct a less than type as well as a more than type cumulative frequency curves, and hence obtain the median rainfall.

-000000-

Page 3 of 4

4

4

4

Page 4 of 4

Download from : https://jsuniltutorial.weebly.com/

	Gurukul	
	The School MARKING SCHEME SAMPLE PAPER -2 HALF YEARLY EXAMINATION, 2018-19	
	MATHEMATICS	
	CLASS – X	
1	<u>SECTION – A</u>	1
1	Let $a = 3x$, $b = 5y$ So, $a + b = 3x + 5y$	1
	Both the terms are odd numbers. When we add two odd numbers, the resulting sum will always be an even number. Hence, the least prime factor of $a + b$ is 2.	
2	$x^2 - 8x + 15$	1
3	K=2	1
4	13 - 2p - 11 = 5p - 3 - 13	1
	p = 6	
5	$cos\theta = sin2\theta$	1
	This is possible only when $\theta = 30^{\circ}$	
	Therefore, $tan^2 30 + cot^2 30 = \frac{1}{3} + 3$	
	$=\frac{10}{3}$	
6	P(having same birthday)= $\frac{1}{366}$	1
	<u>SECTION – B</u>	
7	HCF of 620 and 840,	2
	Maximum capacity of container = $20 l$	
8	$\sqrt{2x+9} = 13 - x$	2
	Squaring both sides,	
	$\Rightarrow 2x + 9 = 169 + x^{2} - 26x$ $\Rightarrow x^{2} - 28x + 160 = 0$	
	$\Rightarrow x = 20 \text{ and } 8$	
9	$\frac{1}{a} + \frac{1}{b} = 1.$	2
	$\Rightarrow a + b = ab \qquad(1)$	
	area of triangle formed by given three points,	

Page	1	of	7
I age	T	01	'

	area of triangle=1/2 {a (l	(1)+0+1(0-b)		
		= ab - a - b		
		=ab-(a+b)		
		= ab - ab (from (1))	
		0		
	Hence, points are colline	ar.		
10	cosec(90–37)°.cosec53°–cot	(90–37)°. <i>cot</i> 53°+ <i>sin</i> ² 55°+ <i>cos</i> ² (90–35)°		2
•	cot(90–10)°.cot(9	0–20)°.tan60°.tan70°.tan80°		
		$=\frac{cosec^{2}53^{\circ}-cot^{2}53^{\circ}+sin^{2}}{cot80^{\circ}.cot70^{\circ}.tan60^{\circ}.tan^{2}}$	$\frac{55^{\circ} + cos^2 55^{\circ}}{270^{\circ} + cos^2 00^{\circ}}$	
	1+1	coi 60 .coi / 0 .tun60 .tu	170 .tuno0	
	$=\frac{1+1}{1\times1\times\sqrt{3}}$	_		
		$=\frac{2\sqrt{3}}{3}$		
11	Class interval	Frequencies	cf	2
	0-10	5	5	
	10-20	25	30	
	20-30	f	30+ <i>f</i>	
	30-40	18	48+ <i>f</i>	
	40-50	7	55+ <i>f</i>	
12	Median = 24 (i) P(prime nu (ii) P(perfect so	$\Rightarrow l + \left(\frac{\frac{n}{2} - cf}{f}\right)h =$ $\Rightarrow 20 + \left(\frac{\frac{55 + f}{2} - 30}{f}\right)$ $\Rightarrow f = 25$ $mber) = \frac{13}{50}$ $quare number) = \frac{2}{25}$		2
		. 25		
		<u>SECTION – C</u>		

13	Let us consider $\sqrt{3} - \sqrt{2}$ be a rational number.	3
	$\sqrt{3} - \sqrt{2} = \frac{a}{b}$, where a, b are co – prime integers, $q \neq 0$.	
	$\Rightarrow \sqrt{3} = \frac{a}{b} - \sqrt{2}$	
	Squaring both sides,	
	$\Rightarrow 3 = \frac{a^2 + 2b^2 - 2\sqrt{2}ab}{b^2}$	
	$\Rightarrow 2\sqrt{2}a = a^2 - b^2$	
	$\Rightarrow \sqrt{2} = \frac{a^2 - b^2}{2a}$	
	Since, irrational \neq Rational.	
	This contradiction arises because of our wrong assumption. Hence, $\sqrt{3} - \sqrt{2}$ is irrational.	
14	$\alpha + \beta = \frac{-5}{2}$ and $\alpha\beta = \frac{k}{2}$	3
	$(\alpha + \beta)^2 = \left(\frac{-5}{2}\right)^2$	
	$\alpha^2 + \beta^2 + \alpha\beta + \alpha\beta = \frac{25}{4}$	
	$\Rightarrow \frac{21}{4} + \frac{k}{2} = \frac{25}{4}$	
	$\Rightarrow k = 2$	
15	2ax - 2by = -(a + 4b)	3
	2bx + 2ay = -(b - 4a)	
	Solving above two equations by any method,	
	$x = \frac{-1}{2} + \frac{4ab}{b^2 - a^2}$	
	$y = \frac{2+a^2}{b^2-a^2}$	
	$y = \frac{1}{b^2 - a^2}$	
16	Putting $D = 0$,	3
	$b^2 - 4ac = 0$	
	$\{-(b-c)\}^2 - 4(a-b)(c-a) = 0$	
<u> </u>	It will lead to $2a = b + c$	
17	Let d is common difference of AP now first 4term is 5,5+d,5+2d,5+3d and next 4term 5+4d,5+5d,5+6d,5+7d	3
	According to question, 20+6d=(20+22d)/2 Page 3 of 7	

Page **3** of **7**

	20+6d=10+11d			
	d=2			
18	Coordinates of the points of trised	ction of a line segment are (-1.0)) and (-4.2) .	3
	r i i i i i i i i i i i i i i i i i i i			
19	$LHS = (sinA + \frac{1}{\cos A})^2 + (cosA)$	$+\frac{1}{\sin 4})^2$.		3
	0371	5001	1)2	
	$=$ $\frac{(s)}{(s)}$	$\frac{\sin A \cos A + 1}{\cos^2 A}^2 + \frac{(\sin A \cos A + 1)^2}{\sin^2 A}$	- 1)-	
	=	$(\sin A \cos A + 1)^2 \left(\frac{1}{\sin^2 A} + \frac{1}{\cos^2 A}\right)$	_)	
		$(\sin A + \cos A + \sin^2 A)^2$	(A)	
	= ($(\sin A \cos A + 1)^2 \left(\frac{\sin^2 A + \cos^2 A}{\sin^2 A \cdot \cos^2 A}\right)$	$\overline{\mathbf{A}}$	
			·	
		$= \left(\frac{\sin A \cos A + 1}{\sin A \cos A}\right)^2$		
		(sinA.cosA)		
	$=(1 + secA. cosecA)^2.$			
20	In ΔBTP,			3
	$\tan 30^\circ = TP/BP$			
	$BP = TP\sqrt{3}$		_	
			30°	
	In ΔGTR ,		60%	
	$\tan 60^\circ = \frac{\mathrm{TR}}{\mathrm{GR}}$		B 30°	
	$GR = \frac{TR}{\sqrt{3}}$			
	As BP = GR			
			50 m	
	$TP\sqrt{3} = \frac{TR}{\sqrt{3}}$			
	3 TP = TP + PR		60°	
	2 TP = BG		G ℓR	
	$TP = \frac{50}{2} = 25 m$			
	Now, $TR = TP + PR$			
	TR = (25 + 50) m			
	Height of tower = $TR = 75 \text{ m}$	TR TR		
	Distance between building and to	wer = GR = $\frac{1}{\sqrt{3}}$		
	$GR = 25\sqrt{3} \text{ m} = 43.25 \text{ m}$			
21				3
	Monthly consumption	Number of consumers	cf	
	65-85	4	4	
	85-105	5	9	1
	05 105	5	,	

-			· · · · · · · · · · · · · · · · · · ·	,
	105-125	13	22	
	125-145	20	42	
	145-165	14	56	
	165-185	8	66	
	185-205	4	70	
		$Median = l + \left(\frac{\frac{n}{2} - c}{f}\right)h$		
		$= 125 + \left(\frac{35 - 22}{20}\right) 20$ $= 138$		
	(i) P(card with even nu	$(mber) = \frac{20}{40}$		
	(ii) P(Either an ace or a	10		
22	(iii) P(Neither a club no			3
		SECTION – D		
23	$(x+2+\sqrt{3})(x-2+\sqrt{3}) = 0$	<u> </u>		4
	P(x) must be divisible by $x^2 - 4x$	c + 1		
	Quotient is $(2x^2 - x - 1)$			
	The other zeroes are 1 and $\frac{-1}{2}$			
24	Let speed of the train be $x \ km/h$	and that of the car be $y km/h$.		4
		$\frac{250}{x} + \frac{120}{y} = 4$		
		-		
		$\frac{130}{x} + \frac{240}{y} = \frac{43}{10}$		
	Equations can be solved by any n			
	$x = 100 \ km/h$ and $y = 80 \ km/h$			
25	Let the time taken by 1st pipe a b then pipe taken by 2nd pipe $b = (x)$ time taken by both pipe together	c + 5) <i>min</i> 11 1/9 or 100/9		4
		$\frac{1}{x} + \frac{1}{(x+5)} = \frac{9}{100}$		
		x = 20m		
	Τ	ime taken by 1st pipe = 20 mi	n	

	Time taken by 2nd pipe = 25 min	
26	$5 + (-41) + 9 + (-39) + 13 + (-37) + 17 \dots + (-5) + 81 + (-3)$ $S = [5 + 9 + 13 + 17 + \dots + 81] + [(-41) + (-39) + (-37) + \dots + (-5) + (-3)]$ $A1 = 5 + 9 + 13 + \dots + 81$ So 81 = 5 + (n-1)4 n = 20 Sum, S(A1) = 20/2 [2×5 + (12)4] S (A1) = 580	4
	Similarly For A2 -3 = -41 + (n-1) (2) So n = 20 Thus $S(A2) = 10 [-6 + 19 \times 2]$ = 320 S = 320 + 580 = 900	
27	We can prove that by showing that diagonals are of different length. Area = 24 <i>sq units</i>	4
28	$RHS = \frac{(secA + tanA)^2 - 1}{(secA + tanA)^2 + 1}$ $= \frac{sec^2A + tan^2A + 2.secA.tanA - 1}{sec^2A + tan^2A + 2.secA.tanA + 1}$ $= \frac{2tan^2A + 2secA.tanA}{2sec^2A + 2secA.tanA}$ $= \frac{2tanA(1 + secA)}{2secA(1 + secA)}$ $= sinA$	4
29	Let AO=H CD=OB=60m A'B=AB=(60+H)m In \triangle AOD, $\tan 30^\circ = \frac{H}{OD}$ OD= $\sqrt{3}$ H Now, in \triangle A'OD, $\tan 60^\circ = \frac{OA'}{OD}$ H=60m Thus, height of the cloud above the lake = AB+A'B	4
	Thus, height of the cloud above the lake = $AB+A'B$ Page 6 of 7	

	=(60+60) = 120 m		
	– 120 III		
Rainfall (ir	n cm)	cf	
Less than 1	0	22	
Less than 2	0	32	
Less than 3	0	40	
Less than 4	0	55	
Less than 5	0	60	
Less than 6	0	66	

000000-

Page 7 of 7