MATHEMATICS-X

Summative Assessment II

DESIGN OF SAMPLE QUESTION PAPER

TYPE OF	MARKS PER	TOTAL NO. OF	TOTAL MARKS
QUESTIONS	QUESTION	QUESTIONS	
M.C.Q	1	8	8
SA-1	2	6	12
SA-11	3	10	30
LA	4	10	40
TOTAL		34	90

BLUE PRINT

S.NO	TOPICS	MCQ(1)	SA1(2)	SA2(3)	LA(4)	TOTAL
1	ALGEBRA	2(2)	4(2)	9(3)	8(2)	23(9)
2	GEOMETRY	1(1)	2(1)	6(2)	8(2)	17(6)
3	TRIGONOMETRY	1(1)		3(1)	4(1)	8(3)
4	PROBABILITY	1(1)		3(1)	4(1)	8(3)
5	COORDINATE	2(2)	2(1)	3(1)	4(1)	11(5)
	GEOMETRY					
6	MENSURATION	1(1)	4(2)	6(2)	12(3)	23(8)
		8(8)	12(6)	30(10)	40(10)	90(34)

MATHEMATICS-X

Summative Assessment II

SAMPLE QUESTION PAPER

Time	allowed: 3hrs				Max marks: 90	
Instr	<u>uctions</u>					
2.	 All questions are compulsory. This Q.P consists of 34 questions divided into four sections A,B,C,D. section A is of 1mark each, section B is of 2marks each, section C is of 3marks each, section D is of 4marks each. 					
		9	Section	Α		
1.	Which of the f	ollowing is a so	lution of t	he equation ?	2x ² +x-6=0?	
	(a)x=2	(b)x=-12	(c))x=3/2	(d)x=-3	
2.	The sum of fire	st five multiples	of 3 is			
	(a)45	(b)65	(c)75	(d)90		
3.	The length of t	_	wn from a	point 8cm a	way from the centre of	
	(a) $\sqrt{7}$ cm	(b) $2\sqrt{7}$	m	(c)10cm	(d)5cm	
4.	4. If the angle of elevation of top of a tower from a point at a distance of 100m from its foot is 60° then the height of the tower is					
	(a) $50\sqrt{3}$ m	(b) $\frac{200}{\sqrt{3}}$	m ((c) $\frac{100}{\sqrt{3}}$ m	(d)100√3m	

5. A card is drawn from a deck of playing cards. The probability of drawing a red face card is

(a) $\frac{1}{26}$	(b) $\frac{3}{26}$	(c) $\frac{4}{26}$	(d) $\frac{1}{13}$
26	26	26	13

6. One end of a diameter of a circle is at (2,3) and centre is(-2,5) what are the coordinates of the other end of this diameter

(a)(-6,7)

(b)(6,-7)

(c)(6,7)

(d)-6,-7)

7. AOBC is a rectangle whose three vertices are A(0,3) O(0,0) B(5,0). The length of its diagonal is

(a)5

(b)3

(c) $\sqrt{34}$

(d)4

8. A metallic sphere of total volume π is melted and recast into the shape of a right circular cylinder of radius 1cm $\,$.what is the height of cylinder.

(a)1cm

(b)2cm

(c)3cm

(d)4cm

Section B

- 9. Find the roots of the equation $6x^2-x-2=0$.
- 10. Find the 7th term from the end of A.P 7,10 ,13......184.
- 11. If PQ, PR are tangents to the circle

With centre O and \angle QPR=50 0 then find

 \angle OQR.

- 12. What point on the x-axis is equidistant from(7,6) and (-3,4)?
- 13. If the perimeter of a protractor is 72cm calculate its area?(π =22/7)
- 14. A rectangular sheet of paper 44cm x 18cm is rolled along its length and a cylinder is formed. Find its volume. (π =22/7)

Section C

- 15. Find the sum of first 25 terms of an A.P whose nth term is 2-3n
- 16. The sum of the areas of two squares is 640sqm. If the difference of their perimeters be 64m find the sides of the squares.
- 17. Find the roots by completing the square method: $2x^2-7x+3=0$.
- 18. Draw Δ ABC with BC=6cm , \angle B=60°, \angle C=45°. Construct another triangle whose sides are 2/3 of corresponding sides of Δ ABC.
- 19. Prove that the parallelogram circumscribing a circle is a rhombus.
- 20. Two poles of equal heights are standing opposite to each other on either side of a road which is 80m wide .From a point between them on the road ,angles of elevation of their tops are 30° and 60° . Find the heights of the poles.
- 21. From 30 tickets marked with numbers 2 to 31, one ticket is drawn at random; find the probability that it is;(a)a multiple of 7 (b)an even number(c)a prime number.
- 22. Prove that the points (0,0) and (5,5),(-5,5) are the vertices of an isosceles right triangle .
- 23. Metallic spheres of radii 6cm,8cm,10cm are melted to form a solid sphere. Find the radius of the resulting sphere.
- 24. Water in a canal 6m wide and 1.5m deep is flowing with a speed of 10km/hr. How much area will it irrigate in 30min,if 8cm of standing water is needed?

Section D

- 25. A motor boat, whose speed is 15km/hr in still water,goes 30km downstream and comes back in a total of 4hrs and 30minutes.determine the speed of stream
- 26. A sum of Rs1890 is to be used to give seven cash prizes . If each prize is Rs50 less than the preceeding prize, find the value of each prize.
- 27. Prove that the tangents drawn from an external point to a circle are equal
- 28.. A circle is touching the side BC $\,$ of $\!\Delta ABC$

at P and touching AB and AC produced at Q and R.

Prove that AQ = $\frac{1}{2}$ X perimeter of \triangle ABC.

29. A man standing on the deck of a ship which is 10m above water level, observes the angle of elevation of the top of a hill as 60° and anle of depression of the base of the hill as 30° .calculate the distance of the hill from ship and height of the hill.

- 30. From a bag containing 5 red,6black and 7 yellow balls,a ball is drawn at random.find the probability that it is (a)red (b) not yellow (c)neither black nor red (d)either black or yellow.
- 31. If the vertices of a triangle are (1,k) (4,-3) and(-9,7) .,and its area is 15 squnits, find the value of k.
- 32. A canvas tent is of the form of a cylinder of diameter15m and height2.4m surmounted by a cone of equal base and height 4m. Find the cost of the canvas required at Rs50 per sqm.
- 33. A juice seller has three types of glasses of inner diameter 5cm and height 10cm.

HEMISPHERICAL RAISED BOTTOM

CONICAL RAISED BOTTOM OF HEIGHT 1.5CM

TYPE C He decides to serve the customer in A type glass.

- 1. Find volume of TYPE A glass.
- 2. Which glass has the minimum capacity.?
- 3. Which mathematical concept is used?
- 4. By choosing TYPE A which value is depicted by the juice seller.?(π =3.14)
- 34. The area of an equilateral triangle is 17320.5 sqcm. with each vertex

as centre, a circle is drawn with radius equal to half the length of the side of the triangle.

Find the area of shaded region.(π =3.14)

$$(\sqrt{3} = 1.73205)$$

Scoring key Maths x

1	С	1
2	а	1
3	b	1
4	d	1
5	b	1
6	а	1
7	С	1
8	а	1
9	$6x^2 + 3x - 4x - 2 = 0$	1/2
	(3x-2)(2x+1)=0	1/2
	(3x-2)(2x+1)=0 $X=\frac{2}{3}, X=\frac{-1}{2}$	1
10	184,13,10,7	1/2
	d=-3	1/2
	a ₇ =a+6d=166	1
11	$\angle QOR=130^{0}$	1/2
	OQ=OR	1/2
	\angle OQR= \angle OR Q=50/2=25 $^{\circ}$	1
12	LetA(7,6),B(-3,4) be the given points,P(x,0)be required point	
	AP=BP	1/2
	$(x-7)^2+(0-6)^2=(x+3)^2+(0-4)^2$	1/2
	-20x=-60	1/2
	X=3	1/2
13	Perimeter of circular arc+d=72	1/2
	π r+2r=72	1/2
	r=14cm	1/2
	Area=308sqcm	1/2
14	H=18,circumference of base=44	1/2
	2π r=44	
	r=7	1/2
	Vol=2772cucm	1
15	2-3n=a _n	
	a ₁ =-1,a ₂ =-4,a ₃ =-7	1/2
	d=-3	1/2
	S ₂₅ =-925	2
16	$X^2+y^2=640$	1/2

	T	T
	4x-4y=16	1/2
	⇒ x-y=16	
	$y^2+(y+16)^2=640$	1/2
	Y ² +16y-192=0	1/2
	Y=8,y=-24	1/2
	When y=8,x=24	1/2
17	$\left(x-\frac{7}{4}\right)^2 = -\frac{3}{2} + \frac{49}{46}$	1
	$ (x - \frac{7}{4})^2 = -\frac{3}{2} + \frac{49}{16} $ $ X = \frac{3}{1}, x = \frac{1}{2}, $	2
18	construction 0fΔABC;	1
	construction 0fΔA′BC;	2
19	A B	FIG 1/2
15		110 1/2
	 ;	
	' /\	
	D	
	AD+BC=AB+CD	2
	BUT AD=BC,AB=CD	1/2
20	A C	
	h	FIG 1/2
	B 30 60 D	
	X 80-X	
	$\tan 30^0 = \frac{h}{x}$, $h = \sqrt{\frac{x}{3}}$	1/2
	$Tan60^0 = \frac{h}{80-x}$	1/2
	X=60	1
	H=20√3	1/2
21	P(mul of 7)= $\frac{4}{30}$	1
	F(IIIIII 01 7)-30	

	$P(even) = \frac{15}{30}$	1
	$P(prime) = \frac{11}{30}$	1
22	LetA(0,0) ,B(5,5),C(-5,5)	
	AB=√50	1/2
	BC=√100	1/2
	AC=√50	1/2
	$BC^2=AB^2+AC^2$	1 1/2
23	$\frac{4}{3}\pi(6^3+8^3+10^3) = \frac{4}{3}\pi r^3$ $216+512+1000 = r^3$	1
	216+512+1000= r ³	1
	1728= r ³	1/2
	r=12	1/2
24	5000x6x1.5=Ax8/100	2
	A=562500sqm	1
25	Upstream speed-=15-x ,downstream speed=15+x	1/2
	$\frac{30}{15-x} + \frac{30}{15+x} = 4\frac{1}{2}$	1
	solving	1
	X=5	1/2
26	x,x-50,x-100.x-150	1
	$\frac{7}{2}$ (2x+6x-50)=1890	1
	x=420	1
	420,370,320,270,220,170,120	1
27	GIVEN ,TO PROVE,CONST,FIG	2
	PROOF	2
28	AQ=AB+BQ	1
	AR=AC+CR	1
	2AQ=AQ+AR	1
	=AB+BC+A [^] D	1
29	$tan30^{0} = \frac{AB}{BC}$	Fig1
	$RC=10\sqrt{3}$	1
	$Tan60^{0} = \frac{DE}{AE}$	
60	Tan60 ⁰ = $\frac{DE}{AE}$ $\frac{\sqrt{3} = \frac{DC - 10}{BC}}{DC A0m}$	1
	E DC=40m	1
	Dist=10√3m	1
30	30	
	В С	
30	$P(R) = \frac{5}{18}$	1
<u> </u>	I Iŭ	

	$P(\text{not yellow}) = \frac{11}{18}$	1
	P(not black ,not red)= $\frac{7}{18}$	1
	Either black or yellow= $\frac{13}{18}$	1
31	Area of a triangle	1
	substituting	1
	K=-3	2
32	I=8.5	1
	$CSA=2\pi rh+\pi rl$	1
	=314sqm	1
	Cost=Rs 157	1
33	1 Vol of glass of type A=196.25cucm	1
	Vol of glass of type B=163.54cucm	
	Vol of glass of type C=186.44cucm	
	2 Glass B	1
	3 Volume of solid fig	1
	4 Honesty	1
34	$\sqrt{3}/4(2R)^2=17320.5/\sqrt{3}$	1
	Area of △ ABC- Area of 3 SECTORS	1
	17320.5-15700	1
	1620.5sqcm	1