

SUMMATIVE ASSESSMENT - I, 2015-16 MATHEMATICS

Class - X

Time Allowed: 3 hours

Maximum Marks: 90

General Instructions:

- 1. All questions are compulsory.
- 2. The question paper consists of 31 questions divided into four sections A, B, C and D. Section-A comprises of 4 questions of 1 mark each; Section-B comprises of 6 questions of 2 marks each; Section-C comprises of 10 questions of 3 marks each and Section-D comprises of 11 questions of 4 marks each.
- 3. There is no overall choice in this question paper.
- 4. Use of calculator is not permitted.

SECTION-A

Question numbers 1 to 4 carry one mark each In \triangle ABC, DE||BC, find the value of x.

If $\csc A = \frac{2}{\sqrt{3}}$, where A is acute, then find value of $\sin^2 A$.

Find the value of $\frac{1-\cos\theta}{1+\cos\theta}$, when $\theta=0^{\circ}$.

The mean of the 10 observation is 8.5. If each observation is multiplied by 2, then what is the 1 new mean.

SECTION-B

Question numbers 5 to 10 carry two marks each.

- State Euclid division lemma. If Euclid lemma is used for a <b as a =b q +r, then which of a, b, q, or r is necessarily zero.
- Check whether 15^n can end with the digit 0 for any natural number n. (300)
- 7 If the sum of two positive numbers is 44 and one number is three times the other number, 2 then find the numbers.

State which of the two triangles given in the figure are similar. Also state the similarity 2

http://jsuniltutorial.weebly.com/

http://jsuniltutorial.weebly.com/

Prove the following identity:

$$\frac{\sin^3\theta + \cos^3\theta}{\sin\theta + \cos\theta} = 1 - \sin\theta \cdot \cos\theta$$

The distribution of sale of shirts sold in a month in a departmental store is as under. Calculate the modal size of shirts sold.

Size (in cm)	80-85	85-90	90- 95	95- 100	100- 105	105- 110	110- 115
Number of shirts sold	33	27	85	155	110	45	15

Calculate the modal size of shirt:

SECTION-C

Question numbers 11 to 20 carry three marks each.

Show that any positive odd integer is of the form 6q+1, 6q+3 or 6q+5 where q is some 3 whole number.

12 Solve the following pair of equations graphically:

$$3x-y=7$$

$$2x + 5y + 1 = 0$$

Divide the polynomial $4x^4 - 3x^3 + 2x^2 - x - 6$ by the polynomial $x^2 - x + 1$ and verify the division algorithm.

The larger of the two supplementary angles is 46° more than the smaller angle. Find the 3 angles.

 \triangle ABC is right angled at C. If D is the mid-point of BC, then prove that $AB^2 = 4AD^2 - 3AC^2$.

If in $\triangle ABC \sim \triangle PQR$, BC = 18.2 cm, QR = 6.5 cm and perimeter of $\triangle ABC = 140$ cm, then find the perimeter of $\triangle PQR$.

17 If $15 \sin \theta = 8 \cos \theta$, then find the value of :

$$\frac{1+\sin\theta}{1-\cos\theta}\cdot\cot\theta$$

18 / Prove that:

$$(\cot\theta - \csc\theta)^2 = \frac{1 - \cos\theta}{1 + \cos\theta}$$

Construct a less than type table from the given frequency distribution table and draw 'less 3 than type ogive'.

Wages more than or equal to (in ₹)	100	120	140	160	180	200	220	240
No. of workers	50	45	42	36	24	15	8	2

http://jsuniltutorial.weebly.com/

nd the unknown entries a, b, e, d, e and in the following distribution of heights of students in a class:

Weight (in Kg)	Frequency	Less than type c.f			
35 - 40	7	a			
40 - 45	d	21			
45 - 50	15	b			
50 - 55	e	58			
55 - 60	23	c .			
60 - 65	19	100			
Total	f				

SECTION-D

Question numbers 21 to 31 carry four marks each.

- Find HCF of 378, 180 and 420 by prime factorization method. Is HCF×LCM of three numbers 4 equal to the product of the three numbers?
- Determine the value of k for which the following system of linear equations has infinite 4 number of solutions:

$$(k-3) x + 3y = k, kx + ky = 12$$

- Obtain all other zeroes of the polynomial $x^4 + 2x^3 13x^2 38x 24$, if two of its zeroes are -1and -2.
- Rahul donated some money and books to a school for poor children. Money and books can be 4 represented by the zeroes (i.e. α , β) of the polynomial $p(x) = x^2 - x - 2$. Akash who is friend of Rahul, also got inspired by him and donated the money and books in the form of a polynomial whose zeroes are $1+2\alpha$ and $1+2\beta$. Find the polynomial represented by Akash's donation?

Why Akash got inspired by Rahul?

- Prove that the ratio of the areas of two similar triangles is equal to the square of the ratio of 4 their corresponding sides.
- 26 In $\triangle ABC$, if $\angle ADE = \angle B$, then prove that $\triangle ADE \sim \triangle ABC$.

Also, if AD = 7.6 cm, AE = 7.2 cm, BE = 4.2 cm and BC = 8.4 cm, then find DE.

Evaluate:

$$\frac{\csc^2 61^\circ - \tan^2 29^\circ + 2.\sin 30^\circ}{\csc^2 A - \tan^2 \left(90^\circ - A\right) + \tan^2 45^\circ} + \frac{3\cot 11^\circ.\cot 21^\circ.\cot 31^\circ.\cot 59^\circ.\cot 69^\circ.\cot 79^\circ}{2\left(\sin^2 21^\circ + \sin^2 69^\circ\right) - \left(\cos^2 41^\circ + \cos^2 49^\circ\right)}$$

http://jsuniltutorial.weebly.com/

28 Prove that :

http://jsuniltutorial.weebly.com/

$$\left(\frac{\cos A}{1+\sin A}+\frac{1+\sin A}{\cos A}\right)\cdot\left(\frac{\cos A}{1-\sin A}-\frac{1-\sin A}{\cos A}\right)=4\tan A.\sec A$$

4

29

If $m = \cos\theta - \sin\theta$ and $n = \cos\theta + \sin\theta$, then show that

$$\sqrt{\frac{m}{n}} + \sqrt{\frac{n}{m}} = \frac{2}{\sqrt{1 - \tan^2 \theta}}.$$

The following table gives the daily income of 50 workers of a factory. Draw both types ("less 4 than type" and "greater than type") ogives

Daily income (in ₹)	100 – 120	120 – 140	140 – 160	160-180	180 – 200	
Number of workers	12	14	8	6	10	

In annual day of a school, age-wise participation of students is shown in the following 4 frequency distribution:

Age of student			1000			BEG	
(in years)	5-7	7-9	9-11	11-13	13-15	15-17	17-19
Number of students	20	10	N. S.			Part In a	
runiber of students	20	18	22	25	20	15	10

Find the mean age of the participants.

11.00

28 2000 0 + 1000 mm 10

18 1420(23

le X

127 76XX

l.weebly.con

Page 4 of 4