9th Floating bodies (Gravitation) Solved Numerical Term-2

Q. A cube of mass 1kg with each side of 1cm is lying on the table. Find the pressure exerted by the block on the table. Take $g=10 \text{ m/s}^2$

Ans: Pressure is given as force/area

so, Force, $F = mg = 1000 \text{ gm X } 10x100 \text{ m/s}^2$

and area, $A = 1 \times 1 \text{ cm}^2 = 1 \text{ cm}^2$

Thus, the pressure exerted would be

 $P = (1000X 1000) / 1 \text{ or } P = 10^6 \text{ pa}$

Q. The mass of a solid iron cube of side 3cm is to be determined usig a spring balance. If the of iron is approximately 8.5 g/cm³, the best suited spring balance for determining weight of the solid would be of

1. range 0-250gwt; least count 1gwt

2. range 0-250gwt; least count 5gwt

3. range 0-1000gwt; least count 5gwt

4. range 0-1000gwt; least count 10gwt

Ans: Edge = 3 cm, Density= 8.5 g/cm^3

Mass= density x volume = 8.5 x(3x3)=229.5 gwt

Therefore second spring balance of range 0-250 gwt with least count 5gwt will be suitable.

Q. The density of turpentine oil is 840 Kg/ m3. What will be its relative density. (Density of water at 4 degree C is 10 cube kg minus cube)

Ans: Relative Density = Density of Substance/ Density of water at 4 0c

Density of turpentine oil = 840 kg/m3 (given).

Density of water at 4 0c = 1000 kg/ m3

Relative density of turpentine oil = Density of turpentine oil / Density of water at 4°c

= (840/1000) kg m-3/kg m-3 = 0.84

since, the relative density of the turpentine oil is less than 1, therefore it will float in water.

Q. A solid body of mass 150 g and volume 250cm3 is put in water . will following substance float or sink if the density of water is 1 gm-3?

Ans: The substance will float if its density is less than water and will sink if its greater.

So, density of solid body is $d = \frac{\text{mass/volume}}{\text{or } d = 150/250} = 0.6 \text{ gm/cm}3$ So, the solid body will float on water.

ACBSE Coaching for Mathematics and Science

Q. A body weighs 50 N in air and when immersed in water it weighs only 40 N. Find its relative density.

Ans: The relative density Would be ratio of the density of the body with respect to air and the density of the body with respect to water.

So,
$$F_1 = 50 \text{ N}$$
 $F_2 = 40 \text{ N}$

so,
$$F_1/F_2 = 50/40 = 5/4$$

or relative masses $m_1/m_2 = 5/4$ and

Density = mass/volume

Volume remains constant, Relative density = d1/d2 = 5/4

Q. A ball of relative density 0.8 falls into water from a height of 2m. find the depth to which the ball will sink?

Ans: Speed of the ball

$$V = \sqrt{2gh} = \sqrt{2x10x2} = 6.32 \text{ m/s}$$

Buoyancy force by water try to stop the ball.

Buoyancy force = weight of displaced water = dx Vxg

where d = density of water V = volume of the ball, $g = 10 \text{ m/s}^2 deceleration}$ of the body by

buoyancy force, a = (dVg)/ m

where
$$m = d'V$$
 $d' = density of block$

$$a = dVg/(d' V) = dg/d' = (d/d')*g = g/(0.8) = 10/0.8$$

(Given,
$$d'/d = 0.8$$
)= 12.5 m/s²

Net deceleration of ball, $a' = a - g = 2.5 \text{ m/s}^2$ Final speed of ball v' = 0

Use
$$v'^2 = v^2 + 2a's$$
 s = depth of ball in the water

$$\Rightarrow$$
 40 = 0 + 2x2.5xs \Rightarrow s = 8m

Q. Equal masses of water and a liquid of relative density 2 are mixed together. Then, the mixture has a relative density of (in g/cm³) a)2/3 b)4/3 c)3/2 d)3

Ans: The masses of two liquids are equal, let it be m.

Let the relative densities of water and liquid be $\rho 1$ and $\rho 2$ respectively.

The volume of the two be V1 and V2, of water and liquid respectively.

The volume of the mixture would be, V = V1 + V2 (1)

thus,
$$2m/\rho$$
 (V) = $m/\rho 1$ (V 1) + $m/\rho 2$ (V 2)

here $\rho 1 = 1, \rho 2 = 2$ and ρ is the relative density of the mixture.

now,

$$2/\rho = 1/\rho 1 + 1/\rho 2$$

by substituting the values, we $\rho/2 = 2/3$

or, the relative density of the combined liquid will be, $\rho=4/3$