DAV BORL PUBLIC SCHOOL, BINA PRACTICE PAPER, HALF YEARLY (2018-19)

Class: IX Subject: Maths
Time Allowed: 3 Hrs. Maximum Marks: 80

General Instructions:-

- > Please check that this question paper contains 30 questions and 3 printed pages.
- The question paper consists of four sections: A, B, C and D
- > Section A consists of 6 questions of 1 mark each.
- > Section B consists of 6 questions of 2 mark each.
- > Section C consists of 10 questions of 3 mark each.
- > Section D consists of 8 questions of 4 mark each.
- ➤ All questions are compulsory.
- There is no overall choice. However, internal choices have been given in some questions.
- ➤ Use of calculator is not permitted.

SECTION - A

- 1. If the polynomial $3x^4 4x^3 3x 1$ is divided by x 1, then find the remainder.
- 2. The abscissa of a point is x and ordinate is y, what is the position of the point.
- 3. In the given figure, if AOB is a straight line, find $\angle AOD$.

- 4. Express $0.\overline{4}$ in the form of $\frac{p}{q}$, where p and q are integers and $q \neq 0$.
- 5. Find the value of k, if x = 2, y = 1 is a solution of the equation 2x + 3y = k.
- 6. If a point P be the mid -point of line segment AB, prove that $AP = BP = \frac{1}{2}AB$.

SECTION - B

7. Rationalize the denominator of the following: 30

$$\frac{3\sqrt{3}-3\sqrt{5}}{5\sqrt{3}-3\sqrt{5}}$$

- 8. Find the value of m so that 2x 1 is a factor of $8x^4 + 4x^3 16x^2 + 10x + m$.
- 9. Plot the points A(2,0), B(2,2), C(0,2) and draw the line segments OA, AB,BC and CO. what do you obtain? Find its area.
- 10. Write four solutions for the equation $\pi x + y = 9$.
- 11. If a point C lies between two points A and B such that it is the mid-point of the line segment AB, prove that every line segment has one and only one mid-point.

12. In the Fig. line AB and CD intersect at O. If $\angle AOC + \angle BOE = 80^o$ and $\angle BOD = 30^o$, find $\angle BOE$ and reflex $\angle COE$.

13. In the given figure, POQ is a line. Ray OR is perpendicular to line PQ. OS is another ray lying between rays OP and OR. Prove that $\angle ROS = \frac{1}{2} (\angle QOS - \angle POS)$

- 14. Represent $\sqrt{7.3}$ on the number line.
- 15. Resolve into linear factors:

$$27p^3 - \frac{1}{216} - \frac{9}{2}p^2 + \frac{1}{4}p$$

OR

Find the product of $(x - 1)(x + 1)(x^2 + 1)(x^4 + 1)$

- 16. D is a point on side BC of $\triangle ABC$ such that AD = AC. Show that AB > AD.
- 17. ABC is a triangle, right-angled at C. A line through the mid-point M of the hypotenuse AB and parallel to BC intersects AC at D. Show that:
 - (a) D is the mid-point of AC
 - (b) MD ⊥ AC
 - (c) CM = MA = $\frac{1}{2}$ AB
- 18. Prove that in a triangle other than an equilateral triangle, angle opposite the longest side is greater than $\frac{2}{3}$ of a right angle.
- 19. ABCD is a rhombus. Show that AC bisects $\angle A$ as well as $\angle C$ and diagonal BD bisects $\angle B$ as well as $\angle D$.
- 21. Prove that if two parallel lines are intersected by a transversal, then bisectors of any two corresponding angles are equal.
- 22. Give the equations of two lines passing through (2, 14). How many more such lines are there, and why?
- 23. Prove that $: \left(\frac{2^a}{2^b}\right)^{a+b} \times \left(\frac{2^b}{2^c}\right)^{b+c} \times \left(\frac{2^c}{2^a}\right)^{c+a} = 1$

SCETION-D

24. Find the values of a and b from:

$$\frac{5 + 2\sqrt{3}}{7 + 4\sqrt{3}} = a + b\sqrt{3}$$

25. Factorise : $a^7 - ab^6$

OR

Factorise using Lon division method $x^3 + 13x^2 + 32x + 20$

26. The taxi fare in a city is as follows. For the first kilometer, the fare is Rs 8, for the

subsequent distance it is Rs 5 per km. taking the distance covered as x km and total fare as Rs y, write a linear equation for this information and draw its graph.

- 27. Prove that an equilateral triangle can be constructed on any given line segment.
- 28. In the given figure, the sides AB and AC of $\triangle ABC$ are produced to point E and D respectively. If the bisectors BO and CO of $\angle CBE$ and $\angle BCD$ respectively meet at point O, then prove that

$$\angle BOC = 90^{\circ} - \frac{1}{2} \angle A$$

- 29. The line segment joining the mid-points of two sides of a triangle is parallel to the third side and equal to half of it.
- 30. In the given figure, the side QR of $\triangle PQR$ is produced to a point. If the bisectors of $\angle PQR$ and $\angle PRS$ meet at point T, then prove that $\angle QTR = \frac{1}{2} \angle QPR$.

