SAMPLE PAPER-1

HALF YEARLY, 2018-19

MATHEMATICS
Time Allowed: 3hrs
CLASS - IX
Maximum Marks : 80

General Instructions :

1. The question paper comprises of thirty questions divided into four Sections- A, B, C and D.
2. Section A comprises of six questions Q1 to Q6 of one mark each.
3. Section B comprises of six questions Q7 to Q12 of two marks each.
4. Section C comprises of ten questions Q13 to Q22 of three marks each.
5. Section D comprises of eight questions Q23 to Q30 of four marks each.
6. All questions are compulsory.
7. Use of calculators is not permitted.

SECTION - A

1 Find two rational numbers between $\sqrt{47}$ and $\sqrt{65}$.
2 Find the remainder when $y^{101}+101$ is divided by $y+1$.

3 Find the image of the point lying on y-axis at a distance of 4 units from x-axis when x-axis is taken as a plane mirror.

4 Write any one equation of a line passing through a point lying on x-axis and whose abscissa is 5 .
5 An angle is $\frac{4}{5}$ times its complement. Find the angle.
6 In a cricket match, Bumrah bowled 60 balls and took 3 wickets. Find the probability that he did not take a wicket.

SECTION - B

7

$$
\begin{equation*}
\text { Simplify : }\left[\left\{(625)^{\frac{-1}{2}}\right\}^{\frac{-1}{4}}\right]^{2} \text {. } \tag{2}
\end{equation*}
$$

8 Without actually calculating the cubes, find the value of: $\left(\frac{-1}{2}\right)^{3}+\left(\frac{-1}{3}\right)^{3}+\left(\frac{5}{6}\right)^{3}$.
9 If $x=2 a+1$ and $y=a-1$ is a solution of the equation $x+2 y-6=0$, find the value of a.

10 A point C lies between two points A and B such that $\mathrm{AC}=\mathrm{CB}$. Using Euclid's axiom prove that $A C=\frac{1}{2} A B$.

11 Name the type of triangle if its angles are in the ratio 1:3:2.
$12 \triangle A B C$ is an isosceles triangle with $\mathrm{AB}=\mathrm{AC}$, if AD bisects $\angle B A C$, prove that $A D \perp B C$.

SECTION - C

13
If $\sqrt{2}=1.14$ and $\sqrt{3}=1.73$, then evaluate $\sqrt{\frac{\sqrt{2}-1}{\sqrt{2}+1}}+\sqrt{\frac{2-\sqrt{3}}{2+\sqrt{3}}}$
14 If $x^{3}+a x^{2}+b x+6$ has $(x-2)$ as a factor and leaves a remainder 3 when divided by $(x-3)$, find the values of a and b.

15 Plot the points $(-2,-2)$ and $(3,-2)$ on the Cartesian plane. Also find the images of these points taking X -axis a plane mirror and hence find the area of the polygon formed by joining these points and their images.

16 Draw the graph of the linear equation $2 x+3 y=12$. At what point, the graph of the equation cuts the x - axis and y-axis?

17 In the given figure $A B=B C, N$ is the mid-point of $A B$ and M is the mid-point of $B C$. Using
Euclid's axiom show that $\mathrm{AN}=\mathrm{MC}$.

18 In fig., m and n are two plane mirrors perpendicular to each other. Show that the incident ray CA is parallel to the reflected ray BD.

19 In fig., $A B C$ is a triangle in which $\angle B=2 \angle C$. D is a point on side BC such that AD bisects $\angle B A C$ and $\mathrm{AB}=\mathrm{CD}$. BE is the bisector of $\angle B$. Find the measure of $\angle B A C$.

20
In fig., $\mathrm{PR}>\mathrm{PQ}$ and PS bisects $\angle \mathrm{QPR}$. Prove that $\angle \mathrm{PSR}>\angle \mathrm{PSQ}$.

21 Construct a $\triangle \mathrm{ABC}$ with $\mathrm{AB}=6 \mathrm{~cm}, \mathrm{BC}-\mathrm{AC}=2 \mathrm{~cm}$ and $\angle B A C=60^{\circ}$. Justify the construction.
22 If the mean of the following data is 20 , find the value of \boldsymbol{P}.

x_{i}	10	15	20	25	30
f_{i}	$\boldsymbol{P}+4$	16	40	20	12

SECTION - D

23 If $x=\frac{2-\sqrt{3}}{2+\sqrt{3}}$ and $y=\frac{2+\sqrt{3}}{2-\sqrt{3}}$ then find the value of $x^{2}+y^{2}$.
24 Using factor theorem factorise: $x^{3}+2 x^{2}-x-2$.
A part of monthly expenses of a family on milk is fixed is Rs. 500 and the remaining varies with the quantity of milk taken extra at the rate of Rs. 20 per litre. Taking the quantity of milk required as \boldsymbol{x} litres and total expenditure on milk is Rs. \boldsymbol{y}, write a linear equation for this information and draw its graph.

In figure $\angle Q>\angle R, \mathrm{PA}$ is the bisector of $\angle Q P R$ and $\mathrm{PM} \perp \mathrm{QR}$. Prove that $\angle A P M=\frac{1}{2}(\angle Q-\angle R)$.

27 State and prove ASA congruence rule.
28 Construct a $\triangle \mathrm{ABC}$ with perimeter 10 cm and base angles of measure 45° and 60°. Justify your construction.

29 Draw a histogram to represent the following distribution:

C.I.	$10-15$	$15-20$	$20-30$	$30-50$	$50-80$
Frequency	6	10	10	8	18

30 A recent survey found that the ages of workers in a factory is distributed as follows:

Age (in years)	$20-29$	$30-39$	$40-49$	$50-59$	60 and above
No. of workers	38	27	86	46	3

If a person is selected at random, find the probability that the person is :
a) 40 years or more
b) under 40 years
c) less than 60 years
d) under 60 but over 39

	MARKING SCHEME - SAMPLE PAPER-1 HALF YEARLY EXAMINATION- 2018-19 MATHEMATICS CLASS - IX		
	SECTION - A		
1	$\sqrt{49}=7, \sqrt{64}=8$		1
2	$f(-1)=(-1)^{101}+101=-1+101=100$		1
3	$(0,-4)$		1
4	Any point lying on x-axis will have its ordinate $=0$ So, point $=(5,0)$ Equation: $\mathrm{x}+\mathrm{y}=5$		1
5	Let angle $=\mathrm{x}$ Its complement $=\left(90^{\circ}-\mathrm{x}\right)$ $x=\frac{4}{5}(90-x)$ So, $x=40^{\circ}$		1
6	$\frac{57}{60}=\frac{19}{20}$		1
	SECTION - B		
7	5		2
8	As $\left(\frac{-1}{2}\right)+\left(\frac{-1}{3}\right)+\left(\frac{5}{6}\right)=\frac{-3-2+5}{6}=\frac{0}{6}=0$ So. $\left(\frac{-1}{2}\right)^{3}+\left(\frac{-1}{3}\right)^{3}+\left(\frac{5}{6}\right)^{3}=3\left(\frac{-1}{2}\right)\left(\frac{-1}{3}\right)\left(\frac{5}{6}\right)=\frac{5}{12}$		2
9	Putting $x=2 a+1$ and $y=a-1$ in $x+2 y-6=0$, we get $\begin{aligned} & (2 a+1)+2(a-1)=6 \\ & a=\frac{5}{4} \end{aligned}$		2

10	$\begin{aligned} & A B=A C+C B \quad \text { (thingswhichcoincideswithoneanotherareequaltooneanother. }) \\ & A B=A C+A C \quad(\text { as } A C=C B) \\ & A C=\frac{1}{2} A B . \end{aligned}$	2
11	Angles are $30^{\circ}, 90^{\circ}$ and 60° Hence, the triangle is a right angle triangle.	2
12	First prove that: $\triangle A B D \cong \triangle A C D$ $\therefore \angle A D B=\angle A D C \quad(c p c t)$ Prove that but, $\angle A D B+\angle A D C=180^{\circ}$ $\therefore \angle A D B=\angle A D C=90^{\circ}$ Hence, $A D \perp B C$.	2
	SECTION - C	
13	$\sqrt{\frac{\sqrt{2}-1}{\sqrt{2}+1}}=\sqrt{\frac{(\sqrt{2}-1) \cdot(\sqrt{2}-1)}{(\sqrt{2}+1) \cdot(\sqrt{2}-1)}}=\sqrt{\frac{(\sqrt{2}-1)^{2}}{2-1}}=(\sqrt{2}-1)=1.14-1=0.14$ Similarly, $\sqrt{\frac{2-\sqrt{3}}{2+\sqrt{3}}}=2-\sqrt{3}=2-1.73=0.27$ $\therefore \sqrt{\frac{\sqrt{2}-1}{\sqrt{2}+1}}+\sqrt{\frac{2-\sqrt{3}}{2+\sqrt{3}}}=0.14+0.27=0.41$	3
14	$\begin{aligned} & f(x)=x^{3}+a x^{2}+b x+6 \\ & f(2)=0 \\ & 8+4 a+2 b+6=0 \\ & 2 a+b=-7 \\ & \\ & f(3)=3 \\ & 27+9 a+3 a+6=3 \\ & 3 a+b=-10 \end{aligned}$ Solving, we get $a=-3 \text { and } b=-1$	3
15	Image of $(-2,-2)=(-2,2) ;$ Image of $(3,2)$ The figure formed will be a rectangle, whose length $=5$ units and breadth $=4$ units So, area $=1 / 2 \times 5 \times 4=10$ square units.	3

16	At x - axis: $(6,0)$ and at y-axis : 0,4)							3
17	$\begin{aligned} & A B=B C \\ & \frac{1}{2} A B=\frac{1}{2} B C \\ & A N=M C \quad(\because N \text { and } M \text { are the midpoint } s \text { of } A B \text { and } B C \text { respectivdy }) \end{aligned}$							3
18	$\begin{aligned} & \angle 1=\angle 2 \\ & \angle 3=\angle 4 \\ & \angle A O B=90^{\circ} \\ & \therefore \text { In } \triangle A O B \\ & \angle 2+\angle 3=90^{\circ} \\ & \Rightarrow 2(\angle 2+\angle 3)=180^{\circ} \\ & \Rightarrow \angle C A B+\angle D B A=180^{\circ} \end{aligned}$ Hence, $C A$ is parallelto $B D$.							3
19	72^{0}							3
20	$\begin{aligned} & \text { In } \triangle \mathrm{PQR}, \\ & \mathrm{PR}>\mathrm{PQ} \\ & \therefore \angle Q>\angle R \\ & \Rightarrow \angle Q+\angle Q P S>\angle R+\angle Q P S \\ & \Rightarrow \angle Q+\angle Q P S>\angle R+\angle R P S \quad(\angle Q P S=\angle R P S, \text { as } P S \text { bisects } \angle Q P R) \\ & \Rightarrow \angle P S R>\angle P S Q \end{aligned}$							3
21	Construction Steps of constructions							3
22	x_{i}	10	15	20	25	30	Total	3
	f_{i}	$P+4$	16	40	20	12	92+P	
	$x_{i} f_{i}$	$10 \mathrm{P}+40$	240	800	500	360	1940+10P	
	$\begin{aligned} & \text { Now, Mean }=\frac{\sum x_{i} f_{i}}{\sum f_{i}} \\ & \Rightarrow 20=\frac{1940+10 P}{92+P} \\ & \Rightarrow P=10 \end{aligned}$							

	SECTION - D	
23	On rationalisin $g \quad x=7-4 \sqrt{3}$ and $y=7+4 \sqrt{3}$ $\therefore x^{2}+y^{2}=194$	4
24	$\begin{aligned} & f(x)=x^{3}+2 x^{2}-x-2 . \\ & f(1)=(1)^{3}+2(1)^{2}-1-2=0 \\ & \therefore f(x-1) \text { isa factorof } f(x) \end{aligned}$ On dividing $f(x)$ by $(x-1)$ we get: $x^{2}+3 x+2$ as the quotient. Now, $x^{2}+3 x+2=(x+1)(x+2)$ So, $f(x)=(x-1)(x+1)(x+2)$	4
25	$20 x+500=y$	4
26	Let us consider $\angle \mathrm{QPA}=\angle \mathrm{RPA}=\mathrm{x}$ and $\angle \mathrm{APM}=\mathrm{y}$ So, $\begin{aligned} & \angle \mathrm{QPM}=\mathrm{x}-\mathrm{y} \\ & \angle \mathrm{RPM}=\mathrm{x}+\mathrm{y} \\ & \angle \mathrm{Q}=90^{\circ}-\mathrm{x}+\mathrm{y} \end{aligned}$ And $\angle \mathrm{R}=90^{\circ}-\mathrm{x}-\mathrm{y}$ $\begin{aligned} \therefore \frac{1}{2}(\angle Q-\angle R) & =\frac{1}{2}[(90-x+y)-(90-x-x)] \\ & =\frac{1}{2}[90-x+y-90+x+y] \\ & =\frac{1}{2}[2 y]=y \end{aligned}$	4
27	Statement and proof as given in the NCERT textbook. All three cases to be shown.	4
28	Construction	4

29	C.I. \quad Frequency	Class Size	Proportion of length of rectangle w.r.t. least class size-5	4
	$10-15$ 6	5	6	
	$15-20$ 10	5	10	
	$20-30$ 10	10	2	
	$30-50$ 8	20	2	
	$50-80$ 18	30	3	
	Histogram to be drawn.			
30	Total workers $=200$ a) $\frac{86+46+3}{200}=\frac{135}{200}=\frac{27}{40}$ b) $\frac{38+27}{200}=\frac{65}{200}=\frac{13}{40}$ c) $\frac{200-3}{200}=\frac{197}{200}$ d) $\frac{86+46}{200}=\frac{132}{200}=\frac{33}{50}$			4

-o000000o-

