

1

2

SAMPLE PAPER-1 HALF YEARLY, 2018-19 MATHEMATICS CLASS – IX

Maximum Marks : 80

Time Allowed: 3hrs General Instructions :

1. The question paper comprises of thirty questions divided into four Sections- A, B, C and D.

- 2. Section A comprises of six questions Q1 to Q6 of one mark each.
- 3. Section B comprises of six questions Q7 to Q12 of two marks each.
- 4. Section C comprises of ten questions Q13 to Q22 of three marks each.
- 5. Section D comprises of eight questions Q23 to Q30 of four marks each.
- 6. All questions are compulsory.

taken as a plane mirror.

7. Use of calculators is not permitted.

SECTION - A

1	Find two rational numbers between $\sqrt{47}$ and $\sqrt{65}$.	1
2	Find the remainder when $y^{101} + 101$ is divided by $y + 1$.	1
3	Find the image of the point lying on y – axis at a distance of 4 units from x-axis when x-axis is	1

- 4 Write any one equation of a line passing through a point lying on x-axis and whose abscissa is 5. 1
- 5 An angle is $\frac{4}{5}$ times its complement. Find the angle.
- 6 In a cricket match, Bumrah bowled 60 balls and took 3 wickets. Find the probability that he did not 1 take a wicket.

SECTION – B

- 7 Simplify: $\left[\left\{\left(625\right)^{\frac{-1}{2}}\right\}^{\frac{-1}{4}}\right]^2$.
- 8 Without actually calculating the cubes, find the value of: $\left(\frac{-1}{2}\right)^3 + \left(\frac{-1}{3}\right)^3 + \left(\frac{5}{6}\right)^3$.
- 9 If x = 2a + 1 and y = a 1 is a solution of the equation x + 2y 6 = 0, find the value of a.

- 10 A point C lies between two points A and B such that AC = CB. Using Euclid's axiom prove that $AC = \frac{1}{2}AB$.
- **11** Name the type of triangle if its angles are in the ratio 1:3:2.
- 12 $\triangle ABC$ is an isosceles triangle with AB = AC, if AD bisects $\angle BAC$, prove that $AD \perp BC$. 2

2

SECTION - C

13
If
$$\sqrt{2} = 1.14 \text{ and } \sqrt{3} = 1.73$$
, then evaluate $\sqrt{\frac{\sqrt{2} - 1}{\sqrt{2} + 1}} + \sqrt{\frac{2 - \sqrt{3}}{2 + \sqrt{3}}}$ 3

- 14 If $x^3 + ax^2 + bx + 6$ has (x 2) as a factor and leaves a remainder 3 when divided by (x 3), find 3 the values of *a* and *b*.
- **15** Plot the points (-2, -2) and (3, -2) on the Cartesian plane. Also find the images of these points taking X-axis a plane mirror and hence find the area of the polygon formed by joining these points and their images. **3**
- 16 Draw the graph of the linear equation 2x + 3y = 12. At what point, the graph of the equation cuts the 3 x axis and y axis?
- 17 In the given figure AB = BC, N is the mid-point of AB and M is the mid-point of BC. Using3 Euclid's axiom show that AN = MC.

18 In fig., m and n are two plane mirrors perpendicular to each other. Show that the incident ray CA is parallel to the reflected ray BD. 3

Page 2 of 4

19 In fig., *ABC* is a triangle in which $\angle B = 2 \angle C$. D is a point on side BC such that AD bisects $\angle BAC$ and AB = CD. BE is the bisector of $\angle B$. Find the measure of $\angle BAC$.

20 In fig., PR > PQ and PS bisects \angle QPR. Prove that \angle PSR > \angle PSQ.

- 21 Construct a \triangle ABC with AB = 6 cm, BC AC = 2 cm and $\angle BAC = 60^{\circ}$. Justify the construction. 3
- 22 If the mean of the following data is 20, find the value of *P*.

x_i	10	15	20	25	30
f_i	<i>P</i> +4	16	40	20	12

SECTION – D

- 23 If $x = \frac{2 \sqrt{3}}{2 + \sqrt{3}}$ and $y = \frac{2 + \sqrt{3}}{2 \sqrt{3}}$ then find the value of $x^2 + y^2$.
- 24 Using factor theorem factorise: $x^3 + 2x^2 x 2$.
- A part of monthly expenses of a family on milk is fixed is Rs.500 and the remaining varies with the quantity of milk taken extra at the rate of Rs.20 per litre. Taking the quantity of milk required as x *litres* and total expenditure on milk is Rs. y, write a linear equation for this information and draw its graph.

3

3

4

4

4

- 27 State and prove ASA congruence rule.
- **28** Construct a \triangle ABC with perimeter 10 cm and base angles of measure 45[°] and 60[°]. Justify your construction.
- **29** Draw a histogram to represent the following distribution:

C.I.	10 – 15	15-20	20 - 30	30 - 50	50 - 80
Frequency	6	10	10	8	18

30 A recent survey found that the ages of workers in a factory is distributed as follows:

Age (in years)	20 - 29	30 - 39	40 - 49	50 - 59	60 and above
No. of workers	38	27	86	46	3

If a person is selected at random, find the probability that the person is :

- a) 40 years or more
- b) under 40 years
- c) less than 60 years
- d) under 60 but over 39

-000000-

4

4

4

4

Gurukul	
The School MARKING SCHEME - SAMPLE PAPER-1 HALF YEARLY EXAMINATION- 2018-19 MATHEMATICS CLASS - IX	
SECTION – A	
$\sqrt{49} = 7$, $\sqrt{64} = 8$	1
$f(-1) = (-1)^{101} + 101 = -1 + 101 = 100$	1
(0, -4)	1
Any point lying on x-axis will have its ordinate = 0 So point = $(5, 0)$	1
Equation: $x + y = 5$	
Let angle = x	1
Its complement = $(90^{\circ} - x)$	
$x = \frac{4}{5}(90 - x)$	
So, $x = 40^{\circ}$	
$\frac{57}{60} = \frac{19}{20}$	1
SECTION – B	<u> </u>
5	2
	4
As $\left(\frac{-1}{2}\right) + \left(\frac{-1}{3}\right) + \left(\frac{5}{6}\right) = \frac{-3-2+5}{6} = \frac{0}{6} = 0$	2
So. $\left(\frac{-1}{2}\right)^3 + \left(\frac{-1}{3}\right)^3 + \left(\frac{5}{6}\right)^3 = 3\left(\frac{-1}{2}\right)\left(\frac{-1}{3}\right)\left(\frac{5}{6}\right) = \frac{5}{12}$	
Putting $x = 2a+1$ and $y = a-1$ in $x + 2y-6 = 0$, we get	2
(2a+1)+2(a-1)=6	
$a = \frac{5}{4}$	
	Generation MARKING SCHEME - SAMPLE PAPER-1 HALF YEARLY EXAMINATION - 2018-19 MATHEMATICS CLASS - IX SECTION - A $\sqrt{49} = 7, \sqrt{64} = 8$ $f(-1) = (-1)^{101} + 101 = -1 + 101 = 100$ (0, -4) Any point lying on x-axis will have its ordinate = 0 So, point = (5, 0) Equation: $x + y = 5$ Let angle = x Its complement = (90 ⁰ - x) $x = \frac{4}{5}(90 - x)$ SECTION - B 5 As $\left(-\frac{1}{2}\right) + \left(-\frac{1}{3}\right) + \left(\frac{5}{6}\right) = 3\left(-\frac{1}{2}\right) \left(-\frac{1}{3}\right) \left(\frac{5}{6}\right) = \frac{5}{12}$ Putting $x = 2a + 1$ and $y = a - 1$ in $x + 2y - 6 = 0$, we get (2a + 1) + 2(a - 1) = 6 $a = \frac{5}{4}$

10	AB = AC + CB (thingswhich coincides with one another are equal to one another.) AB = AC + AC (as $AC = CB$)	2
	$AC = \frac{1}{2}AB.$	
11	Angles are 30^{0} , 90^{0} and 60^{0}	2
	Hence, the triangle is a right angle triangle.	
12	First prove that: $\triangle ABD \cong \triangle ACD$	2
	$\therefore \angle ADB = \angle ADC \ (cpct)$	
	Prove that but , $\angle ADB + \angle ADC = 180^{\circ}$	
	$\therefore \angle ADB = \angle ADC = 90^{\circ}$	
	Hence, $AD \perp BC$.	
	SECTION – C	
13	$\sqrt{\frac{\sqrt{2}-1}{\sqrt{2}+1}} = \sqrt{\frac{(\sqrt{2}-1).(\sqrt{2}-1)}{(\sqrt{2}+1).(\sqrt{2}-1)}} = \sqrt{\frac{(\sqrt{2}-1)^2}{2-1}} = (\sqrt{2}-1) = 1.14 - 1 = 0.14$	3
	Similarly, $\sqrt{\frac{2-\sqrt{3}}{2+\sqrt{3}}} = 2-\sqrt{3} = 2-1.73 = 0.27$	
	$\therefore \sqrt{\frac{\sqrt{2}-1}{\sqrt{2}+1}} + \sqrt{\frac{2-\sqrt{3}}{2+\sqrt{3}}} = 0.14 + 0.27 = 0.41$	
14	$f(x) = x^3 + ax^2 + bx + 6$	3
	f(2) = 0	
	8 + 4a + 2b + 6 = 0	
	2a + b = -7	
	f(3) = 3	
	27 + 9a + 3a + 6 = 3	
	3a + b = -10	
	Solving we get	
	a = -3 and $b = -1$	
15	Image of $(-2, -2) = (-2, 2)$; Image of $(2, 2)$	2
15	The figure formed will be a rectangle, whose length $= 5$ units and breadth $= 4$ units	3
	The figure formed will be a rectangle, whose felight – 5 units and breadin = 4 units So area = $\frac{16}{5}\sqrt{4}$ = 10 square units	
	50 , area $-72 \times 3 \times 4 - 10$ square units.	

16	At $x - axis:$	At $x - axis: (6, 0)$ and at $y - axis: (0, 4)$						3	;
17	AB = BC							3	;
	$\frac{1}{2}AB = \frac{1}{2}B$	$\frac{1}{2}AB = \frac{1}{2}BC$							
	AN = MC	$(\because N \ and \ N$	1 are the n	<i>iidpo</i> int s a	of AB and I	BC respectiv	edy)		
18	$\angle 1 = \angle 2$							3	
10	$\angle 3 = \angle 4$,
	$\angle AOB = 90$	$)^0$							
	\therefore In $\triangle AOB$,								
	$\angle 2 + \angle 3 = 9$	90°							
	$\Rightarrow 2(\angle 2 + \angle 2)$	$\angle 3) = 180^{\circ}$							
	$\Rightarrow \angle CAB +$	$\angle DBA = 180$	0^0						
	Hence, CA	is parallelto	BD.						
19	72 ⁰							3	;
20	In ΔPQR,							3	
20	PR > PQ								,
	$\therefore \angle Q > \angle R$								
	$\Rightarrow \angle Q + \angle QPS > \angle R + \angle QPS$								
	$\Rightarrow \angle Q + \angle QPS > \angle R + \angle RPS (\angle QPS = \angle RPS, \ as \ PS \ bisects \ \angle QPR)$								
	$\Rightarrow \angle PSR > \angle PSQ$								
21	Construction	n						3	3
	Steps of cor	structions							
22	x _i	10	15	20	25	30	Total	3	;
	f_i	<i>P</i> +4	16	40	20	12	92+P		
	$x_i f_i$	10P + 40	240	800	500	360	1940+10P		
	Now, Mean = $\frac{\sum x_i f_i}{\sum f_i}$ 1940+10P								
	$\Rightarrow 20 = \frac{1210 + 101}{92 + P}$								
	$\Rightarrow P = 10$								

4
4
4
4
4
4
4
4

29	C.I.	Frequency	Class Size	Proportion of length of rectangle w.r.t. least class size-5	4					
	10-15	6	5	6						
	15-20	10	5	10						
	20-30	10	10	2						
	30 - 50	8	20	2						
	50 - 80	18	30	3						
	Histogram to be drawn.									
30	Total workers = 200									
	a) $\frac{86+46+3}{200} = \frac{135}{200} = \frac{27}{40}$									
	b) $\frac{38+27}{200} = \frac{65}{200} = \frac{13}{40}$									
	c) $\frac{200-3}{200} = \frac{197}{200}$									
	d) $\frac{86+46}{200} = \frac{132}{200} =$	$\frac{33}{50}$								

·000000·