

1

2

2

SAMPLE PAPER 2 HALF YEARLY, 2018-19 MATHEMATICS CLASS – IX

Maximum Marks: 80

Time Allowed: 3hrs General Instructions :

- 1. The question paper comprises of thirty questions divided into four Sections- A, B, C and D.
- 2. Section A comprises of six questions Q1 to Q6 of one mark each.
- 3. Section B comprises of six questions Q7 to Q12 of two marks each.
- 4. Section C comprises of ten questions Q13 to Q22 of three marks each.
- 5. Section D comprises of eight questions Q23 to Q30 of four marks each.
- 6. All questions are compulsory.
- 7. Use of calculators is not permitted.

SECTION - A

1	Find the product of $\sqrt[3]{2}$. $\sqrt[4]{2}$. $\sqrt[12]{32}$.	1
2	Evaluate: $\frac{(2.3)^3 - 0.027}{(2.3)^2 + 0.69 + 0.09}$	1
3	Find the distance of the point $(5, -12)$ from the origin.	1

- 4 Find the coordinates of that points where the line 3x + 5y = 15 intersects x-axis and y-axis. 1
- 5 If complement of an angle is equal to $\frac{2}{5}$ times its supplement. Find the angle.
- 6 A coin was tossed 20 times and outcomes were noted. If the experimental probability of getting 1 heads is $\frac{3}{5}$, then how many times tails came up?

SECTION – B

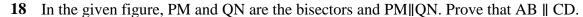
7 Solve: 5^{x-3} . $3^{2x-8} = 225$.

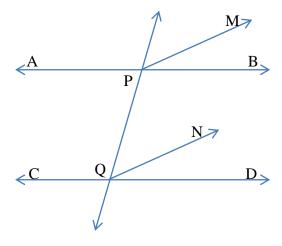
8 If $a^2 + \frac{1}{a^2} = 102$, find the value of $a - \frac{1}{a}$.

9 If the point A (3, 0) and B (1, 2) lie on the graph of the line px + qy - 9 = 0, then find the value of $p^2 - pq + q^2$.

10 Prove that an equilateral triangle can be constructed on any given line segment.

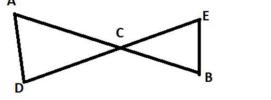
Page 1 of 4

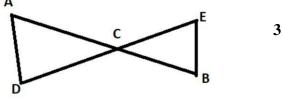

11 Find the value of x:


12 Prove that the angles opposite to the equal sides of an isosceles triangle are equal.

SECTION - C

13 Evaluate :
$$\left(\frac{81}{16}\right)^{\frac{-3}{4}} \times \left[\left(\frac{25}{9}\right)^{\frac{-3}{2}} \div \left(\frac{5}{2}\right)^{-3}\right]$$


- If a + b + c = 0 then, find the value of $\frac{(b+c)^2}{bc} + \frac{(c+a)^2}{ca} + \frac{(a+b)^2}{ab}$. 14
- 15 Plot the points A (0, 4), and B (-3, 0) on the Cartesian plane. Find the IMAGE of Point A taking x-3 axis as mirror and image of point B taking y-axis as mirror. Find the area of the figure formed by joining these points.
- 16 Draw the graph of the linear equation 3x + 4y = 7 and 3x 2y = 1 and find the point of intersection of the lines representing the equations. Δ
- In fig., if AC=DC and CB = CE then show that AB=DE. 17



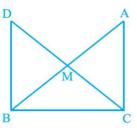
Download from : https://jsuniltutorial.weebly.com/

2

3

3

3


3

- 19 BE and CF are two equal altitudes of a triangle ABC. Prove that the triangle ABC is isosceles.
- **20** Prove that the sum of the lengths of the medians of a triangle is less than the perimeter of the triangle.
- 21 Construct an isosceles triangle whose base is 7.4cm and the vertical angles twice each of the base 3 angle.
- 22 If the mean of the following data is 8.05, find the value of k.

x _i	4	6	8	10	12
f _i	4	2k + 2	14	11	k

SECTION – D

- 23 Express $\frac{1}{1+\sqrt{2}-\sqrt{3}}$ with rational denominator.
- 24 The polynomials $x^3 + 2x^2 5ax 8$ and $x^3 + ax^2 12x 6$ when divided by (x 2) and (x 3)leave the remainder *p* and *q* respectively. If q - p = 10, find the value of *a*.
- A guest house has a fixed charge for the first two days and an additional charge for each day thereafter. Mr. Sharma paid ₹1600 for a room for eight days. If fixed charges are ₹ x and per day charge be ₹ y. Write the linear equation representing the above equation. Draw the graph from linear equation.
- 26 If two parallel lines are intersected by a transversal, prove that bisectors of the interior angle on same side of transversal intersect each other at right angles.
- 27 In given fig, $\triangle ABC$ is right-angled triangle with $\angle C=90^\circ$, M is the mid-point of hypotenuse AB. C is joined to M and produced to a point D such that DM = CM. Point D is joined to point B. Show that: (i) $\triangle AMC \cong \triangle BMD$
 - (ii) ∠DBC is a right angle.
 (iii) △ DBC ≅ △ ACB
 - (iv) $CM = \frac{1}{2}AB$

- **28** Construct a $\triangle XYZ$ in which $\angle Y = 30^\circ$, $\angle Z = 90^\circ$ and XY + YZ + ZX = 11 cm.
- 29 Draw a histogram to represent the following distribution:

C.I.	10 - 15	15-20	20 - 30	30 - 50	50 - 80
Frequency	6	10	10	8	18

4

4

4

3

3

3

4

4

30 A die is rolled 200 times and its outcomes are recorded as below:

Outcome	1	2	3	4	5	6
Frequency	25	35	40	28	42	30

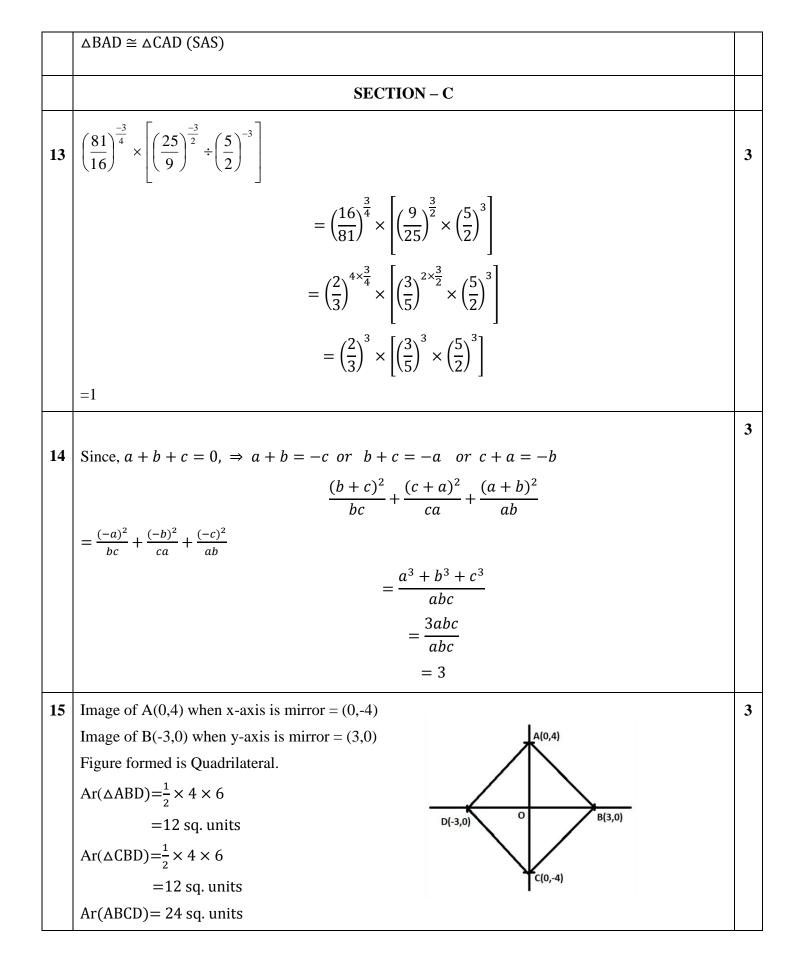
Find the probability of getting:

(a) an even prime

(b) a multiple of 3

(c) number greater than 6

(d) an odd number


-000000-

	Gundan	
	The School MARKING SCHEME- SAMPLE PAPER-2 HALE VIEW DI VIEW AMINATION 2019 10	
	HALF YEARLY EXAMINATION- 2018-19 MATHEMATICS	
	CLASS – IX	
	SECTION – A	
1	$= \sqrt[12]{2^4} \cdot \sqrt[12]{2^3} \cdot \sqrt[12]{32^1}$	1
	$=\sqrt[12]{2^{4+3+5}}$	
	= 2	
2	$\frac{(2.3)^3 - (0.3)^3}{(2.3)^2 + 2.3 \times 0.3 + (0.3)^2}$	1
	$\overline{(2.3)^2 + 2.3 \times 0.3 + (0.3)^2}$	
	$(2, 2, -0, 2)[(2, 2)^2 + 2, 2) + (0, 2)^2]$	
	$=\frac{(2.3-0.3)[(2.3)^2+2.3\times0.3+(0.3)^2]}{(2.3)^2+2.3\times0.3+(0.3)^2}$	
	=2	
3	$=\sqrt{5^2+12^2}$	1
	$=\sqrt{25+144}$	
	=13	
4	When x=0, $5y = 15 - 0$	
	$y = \frac{15}{5}$	
	Coordinates of point are (0,3)	1
	When $y = 0$, $3x = 15 - 0$	
	$x = \frac{15}{3}$	
	Coordinates of point are (5,0)	
5	$(90-x) = \frac{2}{5}(180-x)$	
	450 - 5x = 360 - 2x	1
	3x = 90	
	$x = 30^{\circ}$	
6	No. of times tails came up = $(20 - 20 \times \frac{3}{5})$	
	= 20 - 12	1
	=8	

Page	1	of	7

	SECTION – B	
7	$5^{x-3} \cdot 3^{2x-8} = 5^2 \cdot 3^2$	2
	Comparing exponents,	
	$\Rightarrow x - 3 = 2 \text{ and } 2x - 8 = 2$	
	$\Rightarrow x = 5$	
	$\Rightarrow a^2 + \frac{1}{a^2} - 2 = 102 - 2$	2
8	$\Rightarrow \left(a - \frac{1}{a}\right)^2 = 100$	
	$\Rightarrow \left(a - \frac{1}{a}\right) = 10$	
9	Since, (3,0) is on graph, $3p - 9 = 0$	
	p = 3	2
	Also, (1,2) is on graph, $3 + 2q = 9$	
	2q = 6	
	q = 3	
10	A circle is drawn with point A as the centre and AB as the radius. Similarly, another circle with point B as the centre and BA as the radius. The two circles meet a point, say C. Now, the line segments AC and BC are drawn to form $\triangle ABC$.	2
	Construction: AD is extended such that it meets BC at M.	
11	Sol:	2
	In △ABM,	
	$\angle AMC = 45^{\circ} + 35^{\circ} (Exterior angle property)$	
	∠AMC=80°	
	In $\triangle DMC$,	
	∠ADC=80°+50°(Exterior angle property)	
	$x = 130^{\circ}$	
12	To prove: $\angle B = \angle C$	2
	Construction : Draw bisectors of $\angle A$ intersecting BC at D.	
	Proof:	
	In \triangle ABD and \triangle ACD,	
	AB=AC (given)	
	$\angle BAD = \angle CAD \text{ (given)}$	
	AD=AD (common) Page 2 of 7	

Page 2 of 7

16	Correct graphical representation		3
	Point of intersection is (1,1)		
17	Proof: Given, AC=DC CB=CE Adding both equations, AC+CB=DC+CE (if equals are added to equals, wholes remain equal.) AB=CD		3
18	In the given figure, PM and QN are the bisectors and PM QN. Prove that AB \bigcirc Proof: $\angle 1 = \angle 2$ (given, MP NP) $2.\angle 1 = 2.\angle 2$ (If equals are multiplied to equals, wholes are equal) $\angle SPB = \angle PQD$ Since, corresponding angles are equal, so lines are parallel. Hence, AB CD.	$\begin{array}{c} \text{CD} \\ & \overset{\text{SA}}{1} & \overset{\text{May}}{2} \\ & \overset{\text{P}}{3} & \overset{\text{May}}{4} \\ & \overset{\text{Nay}}{4} & \overset{\text{Nay}}{2} \end{array}$	3
19	Proof : In \triangle BCE and \triangle CBF, \angle BEC = \angle CFB (each 90°) BE = CF (given) BC = BC (common) \triangle BCE $\cong \triangle$ CBF (RHS) AB = AC (CPCT)	c	3
20	To Prove: $AB+BC+CA>AD+BE+CF$ Proof:Since, sum of two sides of a triangle is greater than the third sideSo, $AB+BD > AD$ $AC+CD > AD$ $AC+CD > AD$ $BC+CE > B E$ $AB+AE > BE$ $CA+AF > CF$ $BC+BF > CF$ B Adding all equations, $2(AB+BC+CA) > 2(AD+BE+CF)$ $AB+BC+CA > AD+BE+CF$		3

21	Correct construction			3		
22	<i>x_i</i>	fi	$f_i x_i$	3		
	4	4	16			
	6	2k + 2	12k + 12			
	8	14	112			
	10	11	110			
	12	k	12 <i>k</i>			
	Total:	$\Sigma f_i = 31 + 3k$	$\Sigma f_i x_i = 250 + 24k$			
		me	$an = \frac{\Sigma f_i x_i}{\Sigma f_i}$			
		⇒ 8.05(31 -	(+3k) = 250 + 24k			
			24.15k = 50 + 24k			
	0.45 = 0.15k					
		SEC	k = 3 CTION – D			
23	$=\frac{1}{(1+\sqrt{2})-(\sqrt{3})} \times \frac{(1+\sqrt{2})}{(1+\sqrt{2})}$	$\frac{)+(\sqrt{3})}{)+(\sqrt{3})}$		4		
	$= \frac{1}{(1+\sqrt{2})-(\sqrt{3})} \times \frac{(1+\sqrt{2})}{(1+\sqrt{2})}$	$\frac{F(\sqrt{3})}{F(\sqrt{3})}$				
	$=\frac{(1+\sqrt{2}+\sqrt{3})}{(1+2+2\sqrt{2})-3}$					
	$(1+2+2\sqrt{2})=3$	(1+	$\sqrt{2} + \sqrt{3}$) $\sqrt{2}$			
			$\frac{\sqrt{2} + \sqrt{3}}{2\sqrt{2}} \times \frac{\sqrt{2}}{\sqrt{2}}$			
		$=\frac{\sqrt{2}}{2}$	$\frac{\overline{2}+2+\sqrt{6}}{4}$			
24	P(2) = p (2) ³ + 2(2) ² - 5a(2) - 8 = p ⇒ 8 - 10a = p					
	$g(3) = q$ $\Rightarrow 9a - 15 = q$	$\Rightarrow (3)^3 + a(3)^3 + $	$(3)^2 - 12(3) - 6 = q$			
			q - p = 10 5 - 8 + 10a = 10			

Page **5** of **7**

	22							
	$\Rightarrow a = \frac{33}{19}$							
25	$19 \\ 1600 = x + y(8 - 2)$				4			
20	1600 = x + 6y							
	Graph can be drawn for al	pove equation.						
26	Proof:				4			
	∠1+∠2+∠3+∠4= 180 (co-interior angles)		P/	-			
	$2(\angle 2 + \angle 4) = 180$ $(\angle 2 + \angle 4) = 90$		А	в				
	(22 + 21) = 90							
	In ∆QMR,		M	2				
	By angle sum property,			4				
	$\angle QMR = 90^{\circ}$		4	R D				
	2Qmix - 90		~ /					
			s					
27	Proof:				4			
	$\triangle AMC \cong \triangle BMD(SAS)$							
	AC = BD(cpct)							
	∠MAC=∠MBD (cpct)							
	\Rightarrow BD CA (converse of al	ternate int angle prope	erty)					
	∠DBC=ACB=90° (co-inte	erior angles)						
	$\triangle \text{ DBC} \cong \triangle \text{ ACB (SAS)}$							
	$CM = DM = \frac{1}{2}AB$ (cpct)							
28	Correct construction				4			
29			-		- 4			
2)	CI	Frequency	Width of class	New Frequency				
	10-15	6	5	6	_			
	15-20	10	5	10 5	-			
	20-30 30-50	<u>10</u> 8	10 20	3	-			
	50-80	18	30	2 3	_			
	50-00	10	50	5	- -			
	Correct histogram for abo	ve data.						
30	(a) P(even prime	$) = \frac{35}{200}$			4			
	(b) <i>P</i> (multiple of	$(3) = \frac{70}{200}$						
1	200							

Page	6	of	7

(c) P(number greater than 6) = 0

(d) $P(\text{an odd number}) = \frac{107}{200}$

-000000-

Page 7 of 7