PROBABILITY

Life is a school of probability.

- 1. **An** integer is chosen at random from the first two hundreds digit. What is the probability that the integer chosen is divisible by 6 or 8. (Ans: $\frac{1}{2}$)
- Ans: Multiples of 6 first 200 integers 6, 12, 18, <u>24</u>, 30, 36, 42, <u>48</u>, 54, 60, 66, <u>72</u>, 78, 84, 90, <u>96</u>, 102, 108, 114 <u>120</u>, 126, 132, 138, <u>144</u>, 150, 156, 162, <u>168</u>, 174, 180, <u>186</u>, <u>192</u>, 198
 - Multiples of 8 first 200 integers 8,16,24,32,40,48,56,64,72,80,88,96,104,112,120,128,136,144,152,160, 168, 176,184,192,200
 - Number of Multiples of 6 or 8 = 50P(Multiples of 6 or 8) = 50 / 200 = 1/4
- 2. A box contains 12 balls out of which x are black .if one ball is drawn at random from the box what is the probability that it will be a black ball? If 6 more black balls are put in the box ,the probability of drawing a black ball is now double of what it was before. Find x.

 (Ans: x = 3)
- Ans: Random drawing of balls ensures equally likely outcomes

Total number of balls
$$= 12$$

Total number of possible outcomes
$$= 12$$

Number of black balls
$$= x$$

(1) out of total 12 outcomes, favourable outcomes =
$$x$$

P (black ball) = Number of favourable outcomes
$$=\frac{x}{12}$$

Total number of possible outcomes

(2) if 6 more black balls are put in the bag, then

The total number of black balls =
$$x + 6$$

Total number of balls in the bag =
$$12 + 6 = 18$$

According to the question

Probability of drawing black ball is second case

= 2 X probability drawing of black ball in first case

$$\frac{x+6}{18} = 2\left(\frac{x}{12}\right)$$

$$\frac{x+6}{18} = \frac{x}{6}$$

$$6 x + 36 = 18x$$

$$x = 3$$

hence number of black balls = 3

3. A bag contains 8 red balls and x blue balls, the odd against drawing a blue ball are 2: 5. What is the value of x? (Ans:20)

Ans: No. of blue balls be x

No. of red balls be 8

Total no. of balls = x + 8

Probability of drawing blue balls =

Probability of drawing red balls = $\frac{8}{8+x}$

$$\frac{8}{8+x}: \frac{x}{8+x} = 2$$

$$2\left(\frac{x}{8+x}\right) = 5\left(\frac{8}{8+x}\right)$$

$$2x = 40$$

$$x = 20$$

- 4. A card is drawn from a well shuffled deck of cards
 - What are the odds in favour of getting spade? (Ans: 1:3, 3:1, 3:10, 1:25)
 - (ii) What are the odds against getting a spade?
 - (iii) What are the odds in favour of getting a face card?
 - (iv) What are the odds in favour of getting a red king

Ans: Total cards 52

Spade = 13

Remaining cards 39

i) The odds in favour of getting spade 13The odds is not in favour of getting spade 39

$$=$$
 $\frac{13}{52}:\frac{39}{52}=1:3$

ii) The odds against getting a spade 39 The odds not against getting a spade 13

$$= \frac{39}{52} : \frac{13}{52} = 3 : 1$$

iii) The odds in favour of getting a face card 1000 The odds not in favour of getting a face card 40

$$= \frac{12}{52} : \frac{40}{52} = 3 : 10$$

iv) The odds in favour of getting a red king The odds not in favour of getting a red king 50

$$= \frac{2}{52} : \frac{50}{52} = 1 : 25$$

5 A die is thrown repeatedly until a six comes up. What is the sample space for this experiment? HINT; $A = \{6\}$ $B = \{1,2,3,4,5,\}$

6. Why is tossing a coin considered to be a fair way of deciding which team should get the ball at the beginning of a foot ball match?

Ans: equally likely because they are mutually exclusive events.

7. A bag contains 5 red balls and some blue balls. If the probability of drawing a blue ball is double that of a red ball, determine the number of blue balls in the (Ans:10) bag.

Ans: Let the number of blue balls is the bag be x

Then total number of balls is the bag = 5 + x

Number of all possible outcomes = 5 + x

Number of outcomes favourable to the event of drawing a blue ball = x

(:: there are x blue balls)

 \therefore Probability of drawing a blue ball $\frac{x}{5+x}$

Similarly, probability of drawing a red ball = $\frac{5}{5+r}$

According to the answer

$$\frac{x}{5+x} = 2\left(\frac{5}{5+x}\right)$$

8. A box contains 12 balls out of which x are black. If one ball is drawn at random from the box, what is the probability that it will be a black ball? If 6 more black balls are put in the box the probability of drawing a black ball is now double of what it was before. Find x?

Ans: Number of all possible outcomes = 12

Number of outcomes favourable to the event of drawing blackball-

Required probability =
$$\frac{x}{12}$$

Now when 6 more black balls are put in the box, mber of all possible outcomes.

Number of all possible outcomes = 12 + 6 = 18

Number of outcomes favourable to the event of drawing a black ball = x + 6

$$\therefore$$
 Probability of drawing a black ball $\frac{x+6}{18}$

According to the question,

$$\frac{x+6}{18} = 2\left(\frac{x}{12}\right)$$

- 9. If 65% of the populations have black eyes, 25% have brown eyes and the remaining have blue eyes. What is the probability that a person selected at random has (i) Blue eyes (ii) Brown or black eyes (iii) Blue or black eyes
 - $(Ans: \frac{1}{10}, \frac{9}{10}, \frac{3}{4}, \frac{13}{20})$ neither blue nor brown eyes

No. of black eyes = 65No. of Brown eyes = 25No. of blue eyes = Total no. of eyes = 180

i) P (Blue eyes) =
$$\frac{10}{100} = \frac{1}{10}$$

ii) P (Brown or black eyes) =
$$\frac{90}{100} = \frac{9}{10}$$

- iii) P(Blue or black eyes) = $\frac{75}{100} = \frac{3}{4}$
- iv) P(neither blue nor brown eyes) = $\frac{65}{100} = \frac{13}{20}$
- 10. Find the probability of having 53 Sundays in
 - (i) a leap year
- (ii) a non leap year (Ans: $\frac{2}{7}, \frac{1}{7}$)

Ans: An ordinary year has 365 days i.e. 52 weeks and 1 day This day can be any one of the 7 days of the week.

 $\therefore P(\text{that this day is Sunday}) = \frac{1}{7}$

Hence, P(an ordinary year has 53 Sunday) = $\frac{1}{7}$

A leap year 366 days i.e. 52 weeks and 2 days. This day can be any one of the 7 days of the week

 \therefore P (that this day is Sunday) = $\frac{2}{7}$

Hence, P(a leap year has 53 Sûnday) = $\frac{2}{7}$

11. Find the probability that the month June may have 5 Mondays in

(i) a leap year

(ii) a non leap year

(Ans: $\frac{2}{7}, \frac{2}{7}$)

Self Practice

12. Find the probability that the month February may have 5 Wednesdays in

(i) a leap year

(ii) a non leap year

(Ans: $\frac{1}{7}$,0)

Self Practice

- 13 Five cards the ten, jack, queen, king and ace, are well shuffled with their face downwards. One card is then picked up at random.
 - (i) What is the probability that the card is a queen?
 - (ii) If the queen is drawn and put aside, what is the probability that the second card picked up is a (a) an ace (b) a queen (Ans:

 $\frac{1}{5}, \frac{1}{4}, 0$

Ans: Here, the total number of elementary events = 5

(i) Since, there is only one queen

Downloaded From: www.jsuniltutorial.weebly.com

- \therefore Favourable number of elementary events = 1
- \therefore Probability of getting the card of queen = $\frac{1}{5}$
- (ii) Now, the total number of elementary events = 4
- (a) Since, there is only one ace
 - \therefore Favourable number of elementary events = 1
 - \therefore Probability of getting an ace card $=\frac{1}{4}$
- (b) Since, there is no queen (as queen is put aside)
 - \therefore Favourable number of elementary events = 0
 - \therefore Probability of getting a queen = $\frac{0}{4} = 0$
- 14. A number x is chosen at random from the numbers -3, -2, 0.1, 2, 3. What is the probability that |x| < 2 (Ans: $\frac{3}{2}$)

Ans: x can take 7 values
To get
$$|x| < 2$$
 take -1 , 0, 1
Probability $(|x| < 2) = \frac{3}{7}$

- 15. A number x is selected from the numbers 1,2,3 and then a second number y is randomly selected from the numbers 1,4,9. What is the probability that the product xy of the two numbers will be less than 9? (Ans: $\frac{5}{9}$)
- Ans: Number X can be selected in three ways and corresponding to each such way there are three ways of selecting number y. Therefore, two numbers can be selected in 9 ways as listed below:

$$\therefore$$
 Favourable number of elementary events = 5

Hence, required probability =
$$\frac{5}{9}$$

16. In the adjoining figure a dart is thrown at the dart board and lands in the interior of the circle. What is the probability that the dart will land in the shaded region.

Ans:
$$\frac{25 \pi - 48}{25 \pi}$$

Ans: We have

$$AB = CD = 8$$
 and $AD = BC = 6$

using Pythagoras Theorem is \triangle ABC, we have

$$AC^{2} = AB^{2} + BC^{2}$$

 $AC^{2} = 8^{2} + 6^{2} = 100$
 $AC = 10$

$$OA = OC = 5$$
 [: O is the midpoint of AC]

Area of the circle =
$$\pi$$
 (OA)² = 25 π sq units [:: Area = π r²]

Area of rectangle ABCD = AB x BC = $8 \times 6 = 48 \text{ sq units}$

Area of shaded region = Area of the circle – Area of rectangle ABCD

Area of shaded region = $25 \pi - 48$ sq unit.

Hence

$$\frac{25\pi - 48}{25\pi}$$

17. In the fig points A ,B ,C and D are the centres of four circles ,each having a radius of 1 unit . If a point is chosen at random from the interior of a square ABCD ,what is the probability that the point will be chosen from the shaded region .

$$(Ans: \frac{4-\pi}{4})$$

Ans: Radius of the circle is Lunit

Area of the circle = Area of 4 sector

$$\pi r^2 = \pi \times 1^2 = \pi$$

Side of the square ABCD = 2 units

Area of square $= 2 \times 2 = 4$ units

Area shaded region is

Area of square – 4 x Area of sectors

$$=4-\pi$$

Probability =
$$\left(\frac{4-\Pi}{4}\right)$$

18. In the adjoining figure ABCD is a square with sides of length 6 units points P & Q are the mid points of the sides BC & CD respectively. If a point is selected at random from the interior of the square what is the probability that the point will be chosen from the interior of the triangle APQ.

В

A

jsuniltutorial.weebly.com

$$(Ans: \frac{3}{8})$$

Ans: Area of triangle PQC = $\frac{1}{2}$ x 3 x 3 = $\frac{9}{2}$ = 4. 5 units

Area of triangle ABP =
$$\frac{1}{2}$$
 x 6 x 3 = 9

Area of triangle ADQ =
$$\frac{1}{2}$$
 x 6 x 3 = 9

Area of triangle APQ = Area of a square – (Area of a triangle PQC + Area of triangle

$$= 36 - (18+4.5)$$

= $36 - 22.5$
= 13.5

Probability that the point will be chosen from the interior of the triangle APQ = $\frac{13.5}{36}$

$$=\frac{135}{360}=\frac{3}{8}$$

19. In a musical chair game the person playing the music has been advised to stop playing the music at any time within 2 minutes after she starts playing. What is the probability that the music will stop within the half minute after starting.

(Ans:
$$\frac{1}{4}$$
)

Ans: Here the possible outcomes are all the numbers between 0 and 2.

This is the portion of the number line from 0 to 2 as shown in figure.

Let A be the event that 'the music is stopped within the first half minute.' Then, outcomes favorable to event A are all points on the number line from O to Q i.e., from 0 to 1/2.

The total number of outcomes are the points on the number line from O to P i.e., 0 to 2.

$$\therefore P(A) = \underline{\text{Length of OQ}} = \underline{1/2} = \underline{1}$$

Length of OP 2 4

20. A jar contains 54 marbles each of which is blue, green or white. The probability of selecting a blue marble at random from the jar is $\frac{1}{3}$ and the probability of selecting a green marble at random is $\frac{4}{9}$. How many white marbles does the jar contain? (Ans:12)

Ans: Let there be b blue, g green and w white marbles in the marbles in the jar. Then b + g + w = 54

$$\therefore P (Selecting a blue marble) = \frac{b}{54}$$

It is given that the probability of selecting a blue marble is

$$\therefore \frac{1}{3} = \frac{b}{54} = b = 18$$

We have,

P(Selecting a green marble) =
$$\frac{4}{9}$$

=>
$$\frac{g}{54} = \frac{4}{9}$$
 [: P (Selecting a green marble) = $\frac{4}{9}$ (Given)]
=> $g = 24$

Substituting the values of b and g in (i), we get

$$18 + 24 + w = 54 \Rightarrow w = 12$$