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Chapter 7
Hamilton's Principle - Lagrangian and Hamiltonian Dynamics

Many interesting physics systems describe systems of particles on which many forces are
acting.  Some of these forces are immediately obvious to the person studying the system since
they are externally applied.  Other forces are not immediately obvious, and are applied by the
external constraints imposed on the system.  These forces are often difficult to quantify, but the
effect of these forces is easy to describe.  Trying to describe such a system in terms of Newton's
equations of motion is often difficult since it requires us to specify the total force.  In this
Chapter we will see that describing such a system by applying Hamilton's principle will allow us
to determine the equation of motion for system for which we would not be able to derive these
equations easily on the basis of Newton's laws.  We should stress however, that Hamilton's
principle does not provide us with a new physical theory, but it allows us to describe the existing
theories in a new and elegant framework.

Hamilton's Principle
The evolution of many physical systems involves the minimization of certain physical

quantities.  We already have encountered an example of such a system, namely the case of
refraction where light will propagate in such a way that the total time of flight is minimized.
This same principle can be used to explain the law of reflection: the angle of incidence is equal
to the angle of reflection.

The minimization approach to physics was formalized in detail by Hamilton, and resulted in
Hamilton's Principle which states:

" Of all the possible paths along which a dynamical system may more from one point to
another within a specified time interval (consistent with any constraints), the actual path
followed is that which minimizes the time integral of the difference between the kinetic
and potential energies. "

We can express this principle in terms of the calculus of variations:

δ T −U( )dt
t1

t2

∫ = 0

The quantity T - U is called the Lagrangian L.
Consider first a single particle, moving in a conservative force field.  For such a particle, the

kinetic energy T will just be a function of the velocity of the particle, and the potential energy
will just be a function of the position of the particle.  The Lagrangian is thus also a function of
the position and the velocity of the particle.  Hamilton's theorem states that we need to minimize
the Lagrangian and thus require that

http://jsuniltutorial.weebly.com/

JS
UNIL

 T
UTO

RIA
L



Physics 235 Chapter 7

-  2  -

 
δ L xi , xi( )dt
t1

t2

∫ = 0

In Chapter 6 we have developed the theory required to solve problems of this type and found that
the Lagrangian must satisfy the following relation:

 

∂L
∂xi

− d
dt

∂L
∂xi

= 0

These last equations are called the Lagrange equations of motion.  Note that in order to
generate these equations of motion, we do not need to know the forces.  Information about the
forces is included in the details of the kinetic and potential energy of the system.

Consider the example of a plane pendulum.  For this system, there is only one coordinate we
need to specify, namely the polar angle θ.  The kinetic energy T of the pendulum is equal to

 
T = 1

2
ml2 θ 2

and the potential energy U is given by

U = mgl 1− cosθ( )

The Lagrangian for this system is thus equal to

 
L = T −U = 1

2
ml2 θ 2 − mgl 1− cosθ( )

The equation of motion can now be determined and is found to be equal to

 

∂L
∂θ

− d
dt

∂L
∂ θ

= −mgl sinθ − d
dt

ml2 θ( ) = −mgl sinθ − ml2 θ = 0

or

 
θ + g

l
sinθ = 0

This equation is of course the same equation we can find by applying Newton's force laws.  I this
example, the only coordinate that was used was the polar angle θ.  Even though the pendulum is
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a 3-dimensional system, the constraints imposed upon its motion reduced the number of degrees
of freedom from 3 to 1.

Generalized Coordinates
If we try to describe a system of n particles, we need in general 3n coordinates to specify the

position of its components.  If external constraints are imposed on the system, the number of
degrees of freedom may be less.  If there are m constraints applied, the number of degrees of
freedom will be 3n  - m.  The coordinates do not need to be the coordinates of a coordinate
system, but can be any set of quantities that completely specifies the state of the system.  The
state of the system is thus full specified by a point in the configuration space (which is a 3n - m
dimensional space).  The time evolution of the system can be described by a path in the
configuration space.

The generalized coordinates of a system are written as q1, q 2, q 3, ……  The generalized
coordinates are of course related to the physical coordinates of the particles being described:

xα ,i = xα ,i q1,q2 ,q3,...., t( ) = xα ,i q j , t( )
where i = 1, 2, 3 and α = 1, 2, ….., n.  Since the generalized coordinates in general will depend
on time, we can also introduce the generalized velocities.  The physical velocities will depends
on the generalized velocities:

 
xα ,i = xα ,i q j , qj , t( )

Equations of Motion in Generalized Coordinates
Based on the introduction of the Lagrangian and generalized coordinates, we can rephrase

Hamilton's principle in the following way:

" Of all the possible paths along which a dynamical system may more from one point to
another in configuration space within a specified time interval (consistent with any
constraints), the actual path followed is that which minimizes the time integral of the
Lagrangian function for the system. "

Thus

 
δ L qi , qi , t( )dt
t1

t2

∫ = 0
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and

 

∂L
∂qi

− d
dt

∂L
∂ qi

= 0

When we use the Lagrange's equations to describe the evolution of a system, we must recognize
that these equations are only correct of the following conditions are met:

1. the force acting on the system, except the forces of constraint, must be derivable from
one or more potentials.

2. the equations of constraint must be relations that connect the coordinates of the particles,
and may be time dependent (note: this means that they are independent of velocity).

Constraints that do not depend on velocity are called holonomic constraints.  There are two
different types of holonomic constraints:

1. fixed or scleronomic constraints: constraints that do not depend on time.
2. moving or rheonomic constraints: constraints that depend on time.

Example: Problem 7.4
A particle moves in a plane under the influence of a force f = -Arα-1 directed toward the

origin; A and α are constants.  Choose appropriate generalized coordinates, and let the potential
energy be zero at the origin.  Find the Lagrangian equations of motion.  Is the angular
momentum about the origin conserved?  Is the total energy conserved?

Figure 1.  Problem 7.4.

If we choose (r,θ) as the generalized coordinates, the kinetic energy of the particle is

   
T = 1

2
m x2 + y2( ) = 1

2
m r2 + r2 θ 2( ) (7.4.1)

Since the force is related to the potential by

 
f = − ∂U

∂r
(7.4.2)
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we find

 
U = A

α
rα (7.4.3)

where we let U(r = 0) = 0.  Therefore, the Lagrangian becomes

   
L = 1

2
m r2 + r2 θ 2( ) − A

α
rα (7.4.4)

Lagrange’s equation for the coordinate r leads to

   mr − mr θ 2 + Arα−1 = 0 (7.4.5)

Lagrange’s equation for the coordinate θ leads to

   
d
dt

mr2 θ( ) = 0 (7.4.6)

Since    mr2 θ =   is identified as the angular momentum, (7.4.6) implies that angular momentum is
conserved. Now, if we use , we can write (7.4.5) as

   
mr − 

2

mr3 + Arα−1 = 0 (7.4.7)

Multiplying (7.4.7) by   r , we have

   
mrr − r

2

mr3 + Ar rα−1 = 0 (7.4.8)

which is equivalent to

   

d
dt

1
2

mr2⎡
⎣⎢

⎤
⎦⎥
+ d

dt
2

2mr2
⎡

⎣
⎢

⎤

⎦
⎥ +

d
dt

A
α

rα⎡
⎣⎢

⎤
⎦⎥
= 0 (7.4.9)

Therefore,
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d
dt

T +U( ) = 0 (7.4.10)

and the total energy is conserved.

Example: Problem 7.8
Consider a region of space divided by a plane.  The potential energy of a particle in region 1

is U1 and in region 2 it is U2.  If a particle of mass m and with speed v1 in region 1 passes from
region 1 to region 2 such that its path in region 1 makes and angle θ1 with the normal to the plane
of separation and an angle θ2 with the normal when in region 2, show that

sinθ1
sinθ2

= 1+U1 −U2

T1

where T1 = (1/2)mv1
2,

Figure 2.  Problem 7.8.

Let us choose the (x, y) coordinates so that the two regions are divided by the y axis:

  
U x( ) =

U1 x < 0

U2 x > 0

⎡

⎣
⎢
⎢

If we consider the potential energy as a function of x as above, the Lagrangian of the particle is

   
L = 1

2
m x2 + y2( ) −U x( ) (7.8.1)

Therefore, Lagrange’s equations for the coordinates x and y are
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mx +

dU x( )
dx

= 0 (7.8.2)

   my = 0 (7.8.3)

Using the relation

  
mx = d

dt
m x =

dpx

dt
=

dpx

dx
dx
dt

=
px

m
dpx

dx
(7.8.4)

(7.8.2) becomes

  
px

m
dpx

dx
+

dU x( )
dx

= 0 (7.8.5)

Integrating (7.8.5) from any point in the region 1 to any point in the region 2, we find

  

px

m
dpx

dx1

2

∫ dx +
dU x( )

dx1

2

∫ dx = 0 (7.8.6)

  

px2

2

2m
−

px1

2

2m
+U2 −U1 = 0 (7.8.7)

or, equivalently,

   
1
2

m x1
2 +U1 = 1

2
m x2

2 +U2 (7.8.8)

Now, from (7.8.3) we have

   
d
dt

my = 0

and   my  is constant. Therefore,
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   my1 = my2 (7.8.9)

From (7.8.9) we have

   
1
2

my1
2 = 1

2
my2

2 (7.8.10)

Adding (7.8.8) and (7.8.10), we have

  
1
2

mv1
2 +U1 = 1

2
mv2

2 +U2 (7.8.11)

From (7.8.9) we also have

  mv1 sin θ1 = mv2 sin θ2 (7.8.12)

Substituting (7.8.11) into (7.8.12), we find

  

sin θ1

sin θ2
=

v2

v1
= 1 + U1 −U2

T1

⎡

⎣
⎢

⎤

⎦
⎥

1 2

(7.8.13)

This problem is the mechanical analog of the refraction of light upon passing from a medium of
a certain optical density into a medium with a different optical density.

Lagrange's Equations with Undetermined Multipliers
We have seen already a number of examples were one could remove the equations of

constraint by a suitable choice of coordinates.  For example, when we looked at the motion of an
object on the surface of a cylinder we could either:

1. Use a set of three coordinates to describe the motion, coupled with one equation of
constraint.

2. Use a set of two coordinates (such at the azimuthal angle and the vertical position) to
describe the motion, without an equation of constraint.

In this Section we will look at situations where the constraint depends on the velocity:

 f xα ,i , xα ,i , t( ) = 0
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If the constraints can be expressed in a differential form,

∂fk
∂qj

dqj
j=1

s

∑ = 0

we can directly incorporate it into the Lagrange equations:

 

∂L
∂qj

− d
dt

∂L
∂x j

+ λk t( ) ∂fk
∂qjk=1

m

∑ = 0

It turns out that the forces of constraint can be determined from the equations of constraints and
the Lagrange multipliers λm(t):

Qj = λk t( ) ∂fk
∂qjk=1

m

∑

where Qj is the jth component of the generalized force, expressed in generalized coordinates.
The use of Lagrange multiplier to determine the forces of constraints is nicely illustrated in

Example 7.9 in the textbook, where a disk rolling down an inclined plane is being studied.  If the
disk does not slip, we find that the distance along the plane y and the angle of rotation θ are
related, and the equation of constraint is

f y,θ( ) = y − Rθ = 0

The textbook explains in detail how the Lagrange equations are solved in this case, and I will not
reproduce this here.  The solution shows us that the Lagrange multiplier is given by

λ = − Mgsinα
3

By combining the equation of constraint and the Lagrange multipliers we can determine the
generalized forces of constraint:

Qy = λ t( ) ∂f
∂y

= − Mgsinα
3

and

Qθ = λ t( ) ∂f
∂θ

= MgRsinα
3
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Note that these forces of constraint do not have to be all pure forces.  The force of constraint
associated with y is the friction force between the disk and the plane that is required to ensure
that the disk rolls without slipping.  However, the force of constraint associated with the angle θ
is the torque of this friction force with respect to the center of the disk.  We need to note the
generalized force does not have to have the unit of force.

It is also important to note that if we had chosen to solve the problem by expressing the
Lagrangian in terms of a single coordinate y, by eliminating the angle, we would not have
obtained any information about the forces of constraint.  Although I have stressed that in many
cases, you can simplify the solution by the proper choice of coordinates such that the equations
of constraint are eliminated, in this case, the solution will not provide any information about the
forces of constraint.

Example: Problem 7.12
A particle of mass m rests on a smooth plane.  The plane is raised to an inclination angle θ at

a constant rate α (θ = 0° at t = 0), causing the particle to move down the plane.  Determine the
motion of the particle.

Figure 3.  Problem 7.12.

This problem is an example of a problem with a velocity-dependent constraint.  However, if we
can easily incorporate the constraint into the Lagrangian, we do not need to worry about
constraint functions.  In this example, we use our knowledge of the constraint immediately in our
expression of the kinetic and the potential energy.  Putting the origin of our coordinate system at
the bottom of the plane we find

   
L = T −U = 1

2
m r2 + r2 θ 2( ) − mgr sin θ

   θ = αt; θ = α

   
L = 1

2
m r2 +α 2 r2( ) − mgr sin αt

Lagrange’s equation for r gives
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   mr = mα 2r − mg sin αt

or

   r −α
2r = −g sin αt (7.12.1)

The general solution is of the form r  = rh + rn where rh is the general solution of the
homogeneous equation    r −α 2r = 0  and rn is a particular solution of Eq. (7.12.1).  So

 rh = Aeαt + Be−αt

For rn, try a solution of the form rp = C sinαt.  Then 
   rp = −C α 2 sin αt .  Substituting into (7.12.1)

gives

  −C α 2 sin αt − C α 2 sin αt = −g sin αt

  
C =

g
2α 2

So

  
r t( ) = Aeαt + Be−αt +

g
2α 2 sin αt

We can determine A and B from the initial conditions:

  r 0( ) = r0 (7.12.2)

   r 0( ) = 0 (7.12.3)

Equation (7.12.2) implies:

  r0 = A + B
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Equation (7.12.3) implies:

  
0 = A − B +

g
2α 2

Solving for A and B gives:

  
A = 1

2
r0 −

g
2α 2

⎡
⎣
⎢

⎤
⎦
⎥ B = 1

2
r0 +

g
2α 2

⎡
⎣
⎢

⎤
⎦
⎥

  
r t( ) = 1

2
r0 −

g
2α 2

⎡
⎣
⎢

⎤
⎦
⎥ eαt + 1

2
r0 +

g
2α 2

⎡
⎣
⎢

⎤
⎦
⎥ e−αt +

g
2α 2 sin αt

or

  
r t( ) = r0 cosh αt + g

2α 2 sin αt − sinh αt( )

Although we have found an analytical solution to this problem, we need to examine if the
solution matches our expectation of the motion of the mass m.  The best way to do this is to plot
a graph of the motion of the mass in a Cartesian coordinate system.  Consider the situation where
r0 = 10 m. Figure 4 shows the trajectory of the mass for two different value of α: α = 0.1 rad/s
and α = 0.03 rad/s.

                
Figure 4.  Solution of Problem 7.12 with r0 = 10 m and α = 0.01 rad/s (left) and α = 0.03 rad/s
(right).

The generalized momentum
One of the big differences between the equations of motion obtained from the Lagrange

equations and those obtained from Newton's equations is that in the latter case, the coordinate
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frame used is always a Cartesian coordinate frame.  When we use the Lagrange equations we
have the option to choice generalized coordinates that do not have to correspond to the
coordinates of a Cartesian coordinate system.

The generalized coordinates are related to the Cartesian coordinates, and transformation rules
allow use to carry out transformations between coordinate systems.  The generalized forces of
constraint are related to the Newtonian forces of constraint, as was illustrated in Example 7.9 in
the textbook.  The similarities between the Cartesian and the generalized parameters suggest it
may also be useful to consider the concept of the generalized momentum.

In a Cartesian coordinate system we can easily determine the connection between the
Lagrangian and the linear momentum.  The Lagrangian is equal to

 
L = T −U = 1

2
m xi

2

i=1

3

∑ −U xi( )

The Lagrange equation for this Lagrangian is given by

 

∂L
∂xi

− d
dt

∂L
∂xi

= − ∂U
∂xi

− d
dt

∂T
∂xi

= 0

and we can rewrite this as

 

d
dt

∂T
∂xi

= − ∂U
∂xi

= Fi = mxi =
d
dt
pi

This last equation suggest that we define the generalized momentum of a particle in the
following way:

 
pi =

∂T
∂xi

It is obviously consistent with our definition of linear momentum in Cartesian coordinates.
Consider a particle moving in a two-dimensional plane and having its motion described in

terms of spherical coordinates.  The kinetic energy of the particle is equal to

 
T = 1

2
m r2 + r2 θ 2( )

Since there are two generalized coordinates we can determine two generalized momenta:

 
pr =

∂T
∂r

= mr
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which is the linear momentum of the particle, and

 
pθ = ∂T

∂ θ
= mr2 θ

which is the angular momentum of the particle.  We thus see that two distinct concepts from our
introductory courses emerge directly from our Lagrangian theory.

Homogeneous functions
Consider a homogeneous quadratic function f that depends only on the products of the

generalized velocities:

 
f = aj ,k qj qk

j ,k
∑

An example of such function would be the kinetic energy of a particle.  Consider what happens
when we differentiate this function with respect to one of the generalized velocities:

 

∂f
∂ ql

= aj ,l qj
j
∑ + al ,k qk

k
∑

If we multiply this equation by dql/dt and sum over all values of l we obtain:

 
ql

∂f
∂ ql

=
l
∑ ql aj ,l qj

j
∑ + al ,k qk

k
∑

⎛

⎝⎜
⎞

⎠⎟l
∑ = aj ,l qj ql

l , j
∑ + al ,k qk ql

l ,k
∑ = 2 aj ,k qj qk

j ,k
∑ = 2 f

In general, if f is a homogeneous function of the parameter yk
n, then

qk
∂f
∂qk

=
k
∑ nf

Conservation of Energy
If we consider a closed system, a system that does not interact with its environment, then we

expect that the Lagrangian that describes this system does not depend explicitly on time.  That is

∂L
∂t

= 0
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Of course, this does not mean that dL/dt = 0 since

 

dL
dt

= ∂L
∂qj
qj

j
∑ + ∂L

∂ qk
qj

k
∑ + ∂L

∂t
= ∂L

∂qj
qj

j
∑ + ∂L

∂ qk
qj

k
∑

Using the Lagrange equations, we can rewrite this equation as

 

dL
dt

= qj
d
dt

∂L
∂ qj

⎛

⎝⎜
⎞

⎠⎟j
∑ + ∂L

∂ qk
qj

k
∑ = d

dt
qj

∂L
∂ qj

⎛

⎝⎜
⎞

⎠⎟j
∑

This equation can be written as

 

d
dt

L − qj
∂L
∂ qj

⎛

⎝⎜
⎞

⎠⎟j
∑

⎛

⎝
⎜

⎞

⎠
⎟ = 0

or

 
L − qj

∂L
∂ qj

⎛

⎝⎜
⎞

⎠⎟j
∑ = constant = -H

The constant H is called the Hamiltonian of the system and the Hamiltonian is defined as

 
H = qj

∂L
∂ qj

⎛

⎝⎜
⎞

⎠⎟j
∑ − L

The Hamiltonian H is a conserved quantity for the system we are currently considering.  If we
use Cartesian coordinates we find that

 
H = qj

∂L
∂ qj

⎛

⎝⎜
⎞

⎠⎟j
∑ − L = 2T − T -U( ) = T +U( ) = E

In this case we find that the Hamiltonian of the system is equal to the total energy of the system,
and we thus conclude that the total energy is conserved.  The equality of H and E is only satisfied
if the following conditions are met:

• The potential U depends only on position, and not on velocity.
• The transformation rules connecting Cartesian and generalized coordinates are

independent of time.
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The latter condition is not met in for example a moving coordinate system, and in such system,
the Hamiltonian will not be equal to the total energy.

We thus conclude that if the Lagrangian of a system does not depend explicitly on time, the
total energy of that system will be conserved.

Example Problem 7.22
A particle of mass m moves in one dimension under the influence of a force F:

  
F x,t( ) = k

x2 e− t τ( )

where κ and τ are positive constants.  Compute the Lagrangian and Hamiltonian functions.
Compare the Hamiltonian and the total energy and discuss the conservation of energy for the
system.

The potential energy U corresponding to this force F must satisfy the relation

 
F = − ∂U

∂x

and U must thus be equal to

 
U = k

x
e−t τ

Therefore, the Lagrangian is

   
L = T −U = 1

2
m x2 − k

x
e−t τ

The Hamiltonian is given by

  
H = px x − L = x ∂L

∂ x
− L

so that

  
H =

px
2

2m
+ k

x
e−t τ
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The Hamiltonian is equal to the total energy, T + U, because the potential does not depend on
velocity, but the total energy of the system is not conserved because H contains the time
explicitly.

Conservation of Linear Momentum
The Lagrangian should be unaffected by a translation of the entire system in space, assuming

that space is homogeneous (which is one of the requirement of an inertial reference frame).
Consider what happens when we carry out an infinitesimal displacement of the coordinate
system along one of the coordinate axes.  The change in the Lagrangian as a result of this
displacement must be equal to zero:

 
δL = ∂L

∂xi
δ xi +

∂L
∂xi

δ xi = 0

We can rewrite this equation as

 
δL = ∂L

∂xi
δ xi +

∂L
∂xi

δ xi =
∂L
∂xi

δ xi +
∂L
∂xi

d
dt
δ xi

⎛
⎝⎜

⎞
⎠⎟ =

∂L
∂xi

δ xi = 0

Since the displacement is arbitrary, this equation can only be correct if

∂L
∂xi

= 0

Using the Lagrange equation this is equivalent to requiring

 

d
dt

∂L
∂xi

= 0

or

 

∂L
∂xi

= constant

Assuming that the potential U does not depend on velocity we see that this relation is equivalent
to

 

∂L
∂xi

= ∂T
∂xi

= pi = constant
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The consequence of the independence of the Lagrangian under a translation of space is that
linear momentum is conserved.

Conservation of Angular Momentum
Space is an inertial reference frame is isotropic, which means that the properties of a system

are unaffected by the orientation of the system.  In this case we expect that the Lagrangian does
not change when the coordinate axes are rotated through an infinitesimal angle.  A rotation
through such an angle produces the following change in the position vector:

δ r = δθ × r

The velocity vectors will change in the same way:

 δ r = δθ × r

The Lagrangian should not change as a result of such a transformation.  Thus we must require
that

 
δL = ∂L

∂xi
δ xi +

∂L
∂xi

δ xi
⎛
⎝⎜

⎞
⎠⎟i

∑ = d
dt

∂L
∂xi

⎛
⎝⎜

⎞
⎠⎟
δ xi +

∂L
∂xi

δ xi
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪i
∑ = piδ xi + piδ xi( )

i
∑ = 0

We thus conclude that

 
piδ r + piδ r = 0

When we express the changes in terms of the rotation angle we obtain:

 
pi δθ × r( ) + pi δθ × r( ) = δθ i r × p + r × p⎡⎣ ⎤⎦ = δθ i

d
dt

r × p( )⎡
⎣⎢

⎤
⎦⎥
= 0

Since the angle of rotation was an arbitrary angle, this relation can only be satisfied if

d
dt

r × p( ) = 0

or

r × p = L = constant
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The angular momentum of the system is thus conserved.  This conserved quantity is a direct
consequence of the invariance of the Lagrangian for infinitesimal rotations.  We conclude that
the important conserved quantities are a direct consequence of the properties of the space (and its
symmetries).

Canonical Equations of Motion
The Lagrangian we have discussed in this Chapter is a function of the generalized position

and the generalized velocity.  The equations of motion can also be expressed in terms of the
generalized position and the generalized momentum.  The generalized momentum is defined as

 
pi =

∂L
∂ qi

We can use the generalized momentum to rewrite the Lagrange equations of motion:

 

d
dt

∂L
∂ qi

= pi =
∂L
∂qi

The Hamiltonian can also be expressed in terms of the generalized momentum

 
H = qj

∂L
∂ qjj

∑ − L = qj pj
j
∑ − L

In general we will write the Hamiltonian in terms of the generalized position and the generalized
momentum .  The change in H due to small changes in time and in the generalized position and
momentum is equal to

 

dH = qjdpj + pjd qj −
∂L
∂qj

dqj −
∂L
∂ qj

d qj
⎛

⎝⎜
⎞

⎠⎟j
∑ −

∂L
∂t
dt =

= qjdpj + pjd qj −
∂L
∂qj

dqj − pjd qj
⎛

⎝⎜
⎞

⎠⎟j
∑ −

∂L
∂t
dt =

= qjdpj −
∂L
∂qj

dqj
⎛

⎝⎜
⎞

⎠⎟j
∑ −

∂L
∂t
dt = qjdpj − pjdqj( )

j
∑ −

∂L
∂t
dt

The change in H can also be expressed in the following way:

dH =
∂H
∂pj

dpj +
∂H
∂qj

dqj
⎛

⎝⎜
⎞

⎠⎟j
∑ +

∂H
∂t

dt
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After combining the last two equations we obtained the following relation:

 

∂H
∂pj

dpj +
∂H
∂qj

dqj
⎛

⎝⎜
⎞

⎠⎟j
∑ +

∂H
∂t

dt = qjdpj − pjdqj( )
j
∑ −

∂L
∂t
dt

or

 

∂H
∂pj

− qj
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
dpj +

∂H
∂qj

+ pj
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
dqj

⎛

⎝
⎜

⎞

⎠
⎟

j
∑ +

∂H
∂t

+
∂L
∂t

⎧
⎨
⎩

⎫
⎬
⎭
dt = 0

Since the variations in time and the generalized position and momenta are equal to independent,
the coefficients of dqi, dpi, and dt must be zero.  Thus:

 

∂H
∂pj

− qj = 0

∂H
∂qj

+ pj = 0

∂H
∂t

+
∂L
∂t

= 0

The first two equations are called Hamilton's equations of motion or the canonical equations
of motion.  Note:
• For each generalized coordinate there are two canonical equations of motion.
• For each generalized coordinate these is only one Lagrange equations of motion.
• Each canonical equation of motion is a first order differential equation.
• Each Lagrange equation of motion is a second order differential equation.
Although first order differential equations are in general easier to solve than second order
differential equations, the Hamiltonian is often more difficult to construct than the Lagrangian
since we must express the Hamiltonian in terms of the generalized position and the generalized
momentum.

Example: Problem 7.38
The potential for an anharmonic oscillator is U = kx2/2 + bx4/4 where k and b are constants.

Find Hamilton's equations of motion.

The Hamiltonian of the system is

http://jsuniltutorial.weebly.com/

JS
UNIL

 T
UTO

RIA
L



Physics 235 Chapter 7

-  21  -

  
H = T +U =

1
2

m dx
dt

⎛
⎝⎜

⎞
⎠⎟

2

+
kx2

2
+

bx4

4
=

p2

2m
+

kx2

2
+

bx4

4

The Hamiltonian motion equations that follow this Hamiltonian are

 

dx
dt

=
∂H
∂p

=
p
m

  
dp
dt

= −
∂H
∂x

= −(kx + bx3 )

Example: Problem 7.28.
The force F that is provided fixed the potential U:

 
U = −

k
r

The Lagrangian, expressed in polar coordinates, is thus equal to

   
L = T −U =

1
2

m r2 + r2 θ 2( ) + k
r

In order to use Hamilton's equations of motion we must express the Hamiltonian in terms of the
generalized position and momentum.  The following relations can be used to do this:

  
pr =

∂L
∂r

= mr ⇒ r = pr

m

   
pθ =

∂L
∂ θ

= mr2 θ ⇒ θ =
pθ

mr2

Since the coordinate transformations are independent of t, and the potential energy is velocity-
independent, the Hamiltonian is the total energy.
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H = T +U =
1
2

m r2 + r2 θ 2( )− k
r
=

=
1
2

m pr
2

m2 + r2 pθ
2

m2r4

⎡

⎣
⎢

⎤

⎦
⎥ −

k
r
=

pr
2

2m
+

pθ
2

2mr2 −
k
r

Hamilton’s equations of motion can now be found easily

   

r = ∂H
∂pr

=
pr

m
θ =

∂H
∂pθ

=
pθ

mr2

pr = −
∂H
∂r

=
pθ

2

mr3 −
k
r2 pθ = −

∂H
∂θ

= 0

Example: Problem 7.24.
Consider a simple plane pendulum consisting of a mass m attached to a string of length l.

After the pendulum is set into motion, the length of the string is shortened at a constant rate:

dl
dt

= −α = constant

The suspension point remains fixed.  Compute the Lagrangian and Hamiltonian functions.
Compare the Hamiltonian and the total energy, and discuss the conservation of energy for the
system.

The kinetic energy and the potential energy of the system are expressed as

   

T =
1
2

m 2 + 2 θ 2( ) = 1
2

m α 2 + 2 θ 2( )
U = −mg cosθ

⎤

⎦

⎥
⎥
⎥

(7.24.1)

The Lagrangian is equal to

   
L = T −U =

1
2

m α 2 + 2 θ 2( ) + mg cosθ (7.24.2)

The Hamiltonian is
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H = pθ

θ − L =
∂L
∂ θ
θ − L =

pθ
2

2m2 −
1
2

mα 2 − mg cosθ (7.24.3)

which is different from the total energy, T + U.  The total energy is thus not conserved in this
system because work is done on the system and we have

  
d
dt

T +U( ) ≠ 0 (7.24.4)

NOTE: WE WILL SKIP SECTIONS 7.12 AND 7.13.
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