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Chapter 9
Dynamics of a System of Particles

In this Chapter we expand our discussion from the two-body systems discussed in Chapter 8
to systems that consist out of many particles. In general, these particles are exposed to both
external and internal forces. In our discussion in the Chapter we will make the following
assumptions about the internal forces:

e The forces exerted between any two particles are equal in magnitude and opposite in

direction.

e The forces exerted between any two particles are directed parallel or anti-parallel to the

line joining the two particles.
These two requirements are fulfilled for many forces. However, there are important forces, such
as the magnetic force, do not satisfy the second assumption.

The Center-of-Mass
As we discussed in Chapter 9, it is often useful to separate the motion of a system into the
motion of its center of mass and the motion of its component relative to the center of mass. The

definition of the position of the center of mass for a multi-particle system (see Figure 1) is
similar to its definition for a two-body system:

0

Figure 1. The location of the center of mass of a multi-particle system.

If the mass distribution is a continuous distribution, the summation is replaced by an integration:
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Example: Problem 9.1
Find the center of mass of a hemispherical shell of constant density and inner radius r, and

outer radius r,.

Put the shell in the z > 0 region, with the base in the x-y plane. By symmetry,
Ecm = ycm = 0
To find the z coordinate of the center-of-mass we divide the shell into thin slices, parallel to the

xy plane.

/2

_ Jpav j:oj y j p zr? dr sin 6 d6 do
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Using z = r cos6 and doing the integrals gives

27;0J-n/2“_r2 pracosg dr SinGdOd(p_ p(;)(zﬂ)(i(fa‘l_rfﬂ 3(1’4—1‘4)
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om = J-:; 72 j:; pr’ drsin 6d6 do P(l)(Zn)(;(;’; B r13)) 8(r23 _ rla)

6=0

Linear Momentum
Consider a system of particles, of total mass M, exposed to internal and external forces. The
linear momentum for this system is defined as

The change in the linear momentum of the system can be expressed in terms of the forces acting
on all the particles that make up the system:
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We see that the linear momentum is constant if the net external force acting on the system is O N.
If there is an external force acting on the system, the component of the linear momentum in the
direction of the net external force is not conserved, but the components in the directions
perpendicular to the direction of the net external force are conserved.

We conclude that the linear momentum of the system has the following properties:

1. The center of mass of a system moves as if it were a single particle with a mass equal to
the total mass of the system, M, acted on by the total external force, and independent of
the nature of the internal forces.

2. The linear momentum of a system of particles is the same as that of a single particle of
mass M, located at the position of the center of mass, and moving in the manner the
center of mass is moving.

3. The total linear momentum for a system free of external forces is constant and equal to
the linear momentum of the center of mass.

Angular Momentum
Consider a system of particles that are distributed as shown in Figure 2. We can specify the

location of the center of mass of this system by specifying the vector R. This position vector
may be time dependent. The location of each component of this system can be specified by
either specifying the position vector, r,, with respect to the origin of the coordinate system, or by
specifying the position of the component with respect to the center of mass, r,,.

Figure 2. Coordinate system used to describe a system of particles.
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The angular momentum of this system with respect to the origin of the coordinate system is
equal to

L=31, =3, xmar;}:g{(mf'a)xma(fm-a)}
Since
S{ma}=Xima (%~ R)} = E{meT} - R m, = MR- MR =0
we can rewrite the expression for the angular momentum as
L=(RxR)E my+ X7 xmi } = RxP+ {7 X P} = L+ Lo

The angular momentum is thus equal to sum of the angular momentum of the center of mass and
the angular momentum of the system with respect to the center of mass.

The rate of change in the angular momentum of the system can be determined by using the
following relation:
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The last step in this derivation is only correct of the internal force between i and j is parallel or
anti-parallel to the relative position vector, but this was one of the two assumptions we made
about the internal forces at the beginning of this Chapter. Since the vector product between the
position vector and the force vector is the torque N associated with this force, we can rewrite the
rate of change of the angular momentum of the system as

dL _
E - ZNi,ext

We conclude that the angular momentum of the system has the following properties:
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1. The total angular momentum about an origin is the sum of the angular momentum of the
center of mass about that origin and the angular momentum of the system about the
position of the center of mass.

2. If the net resultant torques about a given axis vanish, then the total angular momentum of
the system about that axis remained constant in time.

3. The total internal torque must vanish if the internal forces are central, and the angular
momentum of an isolated system can not be altered without the application of external
forces.

Example: Problem 9.13
Even though the total force on a system of particles is zero, the net torque may not be zero.

Show that the net torque has the same value in any coordinate system.

The total force acting on the system can be rewritten in terms of the external and internal forces:

F;otal = ZF_;',ext + ZZEj,int = ZF;,ext
i i

i j#i

The problem states that the total force is equal to zero.
Now consider two coordinate systems with origins at 0 and 0

O'

T
0 0

where
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r, is a vector from 0 to 0’
T, is the position vector of m; in 0
7," is the position vector of m; in 0’

We see that 7, =7,+7";. The torque with respect to 0 is given by

T= Zri X Fi,ext
i

The torque with respect to 0 is equal to

But, since it is given that

we conclude that

Energy

The total energy of a system of particles is equal to the sum of the kinetic and the potential
energy.

The kinetic energy of the system is equal to the sum of the kinetic energy of each of the
components. The kinetic energy of particle i can either be expressed in terms of its velocity with
respect to the origin of the coordinate system, or in terms of its velocity with respect to the center
of mass:

i =Ter = (§+7i')‘(§+?i') = R-R+ 22'-I;i’+r‘i'.r*i'
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The kinetic energy of the system is thus equal to

T= Z:%mivi2 = Z‘%mivi‘2 +Zml(Vl '-\7)+z%min = Z%mivi V°_zm nt MV

Based on the definition of the position of the center of mass:
E:iz :_z (R+7) =R+~ m7
M M=

we conclude that

The kinetic energy of the system is thus equal to

| 1 2
T=—MV° "+ ) —my,'
2 22 11

The change in the potential energy of the system when it moves from a configuration 1 to a
configuration 2 is related to the work done by the forces acting on the system:

W, = ZJ ,mcﬁZJZ i,

i1 j#i

If we make the assumption that the forces, both internal and external, are derivable from
potential functions, we can rewrite this expression as

- —Z jﬁ (Ui,ext )’sz - Z jz v (Uij,int )‘dF,

i1 j#i

The first term on the right-hand side can be evaluated easily:

= Z{Ui,ext (2) U, o (1)}

i

ST i =20,

The second term can be rewritten as
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Here we have used the fact that the internal force between i and j satisfy the following relation

ijint =~ i int

and thus

=
I
d

ij,int =~ ji,int

The integral can be evaluated easily:

ZTZ{§(UUJM )“ﬁu} = ZZj‘dUij,int v ZZ{Uij,int (2)- U im (1)}

i1 j<i i j<ii ioj<i

The total potential energy of the system U is defined as the sum of the internal and the external
potential energy and is equal to

U= ZUi,ext + ZZUUaim

i j<i
The work done by al the force to make the transition from configuration 1 to configuration 2 is
Wi :_U|12 :_(UZ —U1)=U1 -U,
Using the work-energy theorem we can conclude that
W,=U -U,=AT =T, -T,
or
E=T+U =T,+U, =E,
We thus see that the total energy is conserved. If the system of particles is a rigid object, the
components of the system will retain their relative positions, and the internal potential energy of

the system will remain constant.
We conclude that the total energy of the system has the following properties:
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1. The total kinetic energy of the system is equal to the sum of the kinetic energy of a
particle of mass M moving with the velocity of the center of mass and the kinetic energy
of the motion of the individual particles relative to the center of mass.

2. The total energy for a conservative system is constant.

Example - Problem 9.21
A flexible rope of length 1.0 m slides from a frictionless table top as shown in Figure 3. The

rope is initially released from rest with 30 cm hanging over the edge of the table. Find the time
at which the left end of the rope reaches the edge of the table.

Figure 3. Problem 9.21.

Let us call x the length of rope hanging over the edge of the table, and L the total length of the
rope. The equation of motion is

Let us look for solution of the form
x=Ae” +Be™

Putting this into equation of motion, we find

Initial conditions are

x(t=0)=x,=03m
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and
(t=0)=0m/s-
From these we find that
A=B=x,/2
We thus conclude that
x = x, cosh (wt)

When x = L, the left end of the rope reaches the edge of the table, and the corresponding time is

t= l cosh™ [L] =0.59s.
0] X,

To verify our calculations, let's make sure that energy is conserved. Assume the rope has a total
mass M. We choose our coordinate system such that the vertical position coordinate on the
surface of the table is 0; we also choose the surface of the table to be the plane in which the
gravitational potential energy is equal to 0. To determine the change in the potential energy of
the of the rope, we examine the change in the vertical position of its center of mass:

e S B

and

yf,cm:_2

The change in the potential energy is thus equal to

1 1 x> 1 X,
U=U,-U.=Mg| ——L |- Mg| ——2% | = — Mol {20 _
e g(zj g(zszg{ﬁ }

Note: since the rope does not stretch, there is no change in the potential energy associated with
the internal forces. To determine the change in the kinetic energy of the system, we need to
determine the change in the velocity of the center of mass. The system is initially at rest, and the
initial velocity of the center of mass is thus O (and so is its kinetic energy). The velocity of the

- 10 - http://jsuniltutorial.weebly.com/



AC(:BS(E Coacﬁlnﬂ for Mathematics and Sclenr:e

system at the time the left end of the rope reaches the edge of the table can be found from the
equations of motion:
dx(t)

d .
v, ()= =% coshwt = x,wsinh wt
t t

When the rope reaches the edge of the table, the velocity of the center of mass is thus equal to

1 L L 12
Vem [l’ = COSh_l (_j) = x()w Sinh[COSh_l [—J] = .X(](U sinh iSinh_l ( 2 1]
@ Yo %o X,

This equation can be rewritten as

1 L r
vcm(tz—cosh_l (—szo §[ —2—1]
W X, L\ x,

The change in the kinetic energy of the system is thus equal to

1 1 g I’ 1M 1 x,’
AT=T,-T,=—Mv,, =-Mx) S| —5-1|=——¢g(L’-x)=-MgL| 1--% |=-AU
f i 2 cm, f 2 0 L( J g( 0) 2 g ( LJ

Elastic and Inelastic Collisions
When two particles interact, the outcome of the interaction will be governed by the force law
that describes the interaction. Consider an interaction force F, that acts on a particle. The result

mnt

of the interaction will be a change in the momentum of the particle since

_ dv B d_p
nt dt dt

If the interaction occurs over a short period of time, we expect to a change in the linear
momentum of the particle:

!
J‘Emdt J( )dt—pf pi=A4p

This relation shows us that if we know the force we can predict the change in the linear
momentum, or if we measure the change in the linear momentum we can extract information
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about the force. We note that the change in the linear momentum provides us with information
about the time integral of the force, not the force. Due to the importance of the time integral, it
has received its own name, and is called the impulse P:

7
P= [

If we consider the effect of the interaction force on both particles we conclude that the change in
the linear momentum is O:

Ap = Ap, + Ap, = J 12mdt + J.le mdt = J.Fiz mdf — jFlz mdt =0

This of course should be no surprise since when we consider both particles, the interaction force
becomes an internal force and in the absence of external forces, linear momentum will be
conserved.

The conservation of linear momentum is an important conservation law that restricts the
possible outcomes of a collision. No matter what the nature of the collision is, if the initial linear
momentum is non-zero, the final linear momentum will also be non-zero, and the system can not
be brought to rest as a result of the collision. If the system is at rest after the collision, its linear
momentum is zero, and the initial linear momentum must therefore also be equal to zero. Note
that a zero linear momentum does not imply that all components of the system will be at rest; it
only requires that the two object have linear momenta that are equal in magnitude but directed in
opposite directions.

The most convenient way to look at the collisions is in the center-of-mass frame. In the
center-of-mass frame, the total linear momentum is equal to zero, and the objects will always
travel in a co-linear fashion. This illustrated in Figure 4.

Laboratory System Center-of-Mass System

m my my uj ul M2
2 5 M2

(a) Initial condition (b) Initial condition

my

(¢) Final condition (d) Final condition

Figure 4. Two-dimensional collisions in the laboratory frame (left) and the center-of-mass frame
(right).
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We frequently divide collisions into two distinct groups:

e Elastic collisions: collisions in which the total kinetic energy of the system is conserved. The
kinetic energy of the objects will change as a result of the interaction, but the total kinetic
energy will remain constant. The kinetic energy of one of the objects in general is a function
of the masses of the two objects and the scattering angle.

e Inelastic collisions: collisions in which the total kinetic energy of the system is not
conserved. A totally inelastic collision is a collision in which the two objects after the
collision stick together. The loss in kinetic energy is usually expressed in terms of the Q
value, where O = K; - K;:

o Q <0: endoergic collision (kinetic energy is lost)

o Q> 0: exoergic collision (kinetic energy is gained)

o QO =0: elastic collision (kinetic energy is conserved).
In most inelastic collisions, a fraction of the initial kinetic energy is transformed into internal
energy (for example in the form of heat, deformation, etc.).
Another parameter that is frequently used to quantify the inelasticity of an inelastic collision
is the coefficient of restitution &:

2 1
8——
|2 l|

where u are the velocities after the collision and v are the velocities before the collision. For
a perfect elastic collision € = 1 and for a totally inelastic collision €= 0.

One important issue we need to address when we focus on collisions is the issue of
predictability. Let's consider what we know and what we need to know; we will assume that we
looking at a collision in the center-of-mass frame. Let's define the x axis to be the axis parallel to
the direction of motion of the incident objects, and let's assume that the masses of the objects do
not change. The unknown parameters are the velocities of the object; for the n-dimensional case,
there will be 2n unknown. What do we know?

e Conservation of linear momentum: this conservation law provides us with n equations with
2n unknown.

e Conservation of energy: if the collision is elastic, this conservation law will provide us with 1
equation with 2n unknown.
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For elastic collisions we thus have n+1 equations with 2n unknown. We immediately see that
only for n = 1 the final state is uniquely defined. For inelastic collisions we have n equations
with 2n unknown and we conclude that event for n = 1 the final state is undefined. When the
final state is undefined we need to know something about some of the final-state parameters to
fix the others.

There are many applications of our collision theory. Consider one technique that can be used
to study the composition of a target material. We use a beam of particles of known mass m, and
kinetic energy T, to bombard the target material and measure the energy of the elastically
scattered projectiles at 90°. The measured kinetic energy depends on the mass of the target
nucleus and is given by

2 2

T. = M My 11T

final — 2 2 initial
m, +m2 m,

By measuring the final kinetic energy we can thus determine the target mass. Note: we need to
make sure that the object we detect at 90° is the projectile. An example of an application of this
is shown in Figure 5.
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Figure 5. Energy spectrum of the scattered projectiles at 90°.
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Scattering Cross Section
We have learned a lot of properties of atoms and nuclei using elastic scattering of projectiles

to probe the properties of the target elements. A schematic of the scattering process is shown in
Figure 6. In this Figure, the incident particle is deflected (repelled) by the target particle. This
situation will arise when we consider the scattering of positively charged nuclei.

Y

Figure 6. Scattering of projectile nuclei from target nuclei.

The parameter b is called the impact parameter. The impact parameter is related to the angular
momentum of the projectile with respect to the target nucleus.

When we study the scattering process we in general measure the intensity of the scattered
particles as function of the scattering angle. The intensity distribution is expressed in terms of
the differential cross section, which is defined as

(0)= #of interactions per target nucleus into an area dQ2' at 0
# of incident particles per units area

;db
F 1
b 2
/\\ { A
U Scattering
center
dA =21 b db

Figure 7. Correlation between impact parameter and scattering angle.

There is a one-to-one correlation between the impact parameter b and the scattering angle 6 (see
Figure 7). The one-to-one correlation is a direct effect of the conservation of angular
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momentum. Assuming that the number of incident particles is conserved, the flux of incident
particles with an impact parameter between b and b + db is equal to

dl, = 1{2nbdb}

must be the same as the number of particles scattered in the cone that is specified by the angle 6
and width d6. The area of this cone is equal to

dQ'=2msin6d0
The number of particles scattered into this cone will be

dl,, =-10(0)2msin6do

The minus sign is a result of the fact that if db >0, d6 < 0. We thus conclude that
I{27rbdb} = —16(0)27r sin8d6
or

[27bdb} b
{-27sin6dO} sinO

(6)=

i
do

The scattering angle 0 is related to the impact parameter b and this relation can be obtained using
the orbital motion we have discussed in this and in the previous Chapter:

= (b/r )dr
\/1 b /r)-(UIT,")

The relation between the scattering angle 6 and the impact parameter b depends on the potential
U. For the important case of nuclear scattering, the potential varies as k/r. For this potential we
can carry out the integration and determine the following correlation between the scattering
angle and the impact parameter:

(k/b)

cos0 = ———=—
1+ (x /b)°

where
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We can use this relation to calculate db/df and get the following differential cross section:

o(0)= (25‘0')2 sin’ (19/2)

We conclude that the intensity of scattered projectile nuclei will decrease when the scattering
angle increases. If the energy of projectile nuclei is low enough, the measured angular
distribution will agree with the so-called Rutherford distribution over the entire angular range, as
was first shown by Geiger and Marsden in 1913 (see Figure 8 left).

Each trajectory of the projectile can be characterized by distance of closest approach and
there is a one-to-one correspondence between the scattering angle and this distance of closest
approach. The smallest distance of closest approach occurs when the projectile is scattered
backwards (8 = 180°). The distance of closest approach decreases with increasing incident
energy and the Rutherford formula indicates that the intensity should decrease as 1/7°. This was
indeed observed, up to a maximum incident energy, beyond which the intensity dropped of much
more rapidly than predicted by the Rutherford formula (see Figure 8 right). At this point, the
nuclei approach each other so close that the strong attractive nuclear force starts to play a role,
and the scattering is no longer elastic (the projectile nuclei may for example merge with the
target nuclei).

The scatterad intensity daparts
from the Rutherford scattering
B formula at about 27.5 MeV
10° <] »
g 10t
6 =
10 e §
2 Geiger and Marsden's =2
2 0%t | data points a5
& 2g
2 4 - e
£10 Theoretical scattering ]
B of one point charge 4=
S A off another :—Cﬂf; 10 +
2 Rutherford
10° T Iprmula Alpha energy
in MaV
10 L ) ) L " ) L
0° 200 40° 607 BO° 1007 1200 140° L 1 1 1 L 1
Scatiering angle 15 20 25 30 35 40

Figure 8. Measurement of the scattering of alpha particles from target nuclei. Figures taken
from http://hyperphysics.phy-astr.gsu.edu/hbase/nuclear/rutsca2.html.
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