Paper: 01 Class-X-Math: Summative Assessment - I

Tota	ıl ma	arks of the paper:	90	Total time of the paper:		3.5 hrs
Que	stio	ns:				
- 	f on	e more value is incl	luded in the data,	ns is calculated as 19.25. then for the new data with of this 13 th observation is:		[Marks:1
	В.	30				
	C.	28				
	D.	29				
		ind B are the angles then 1+cot ² A =	s of a right angled	triangle ABC, right angled		[Marks:1]
	Α.	cot ² B				
	В.	tan ² B				
	C.	cos ² B				
	D.	sec ² B				
3] \	Whic	ch of the following r	numbers is irratior	nal?		[Marks:1]
	Α.	0.23232323				
	В.	0.11111				
	C.	2.454545				
	D.	0.101100101010				
4]					$\frac{1}{2}$ \pm $\frac{1}{2}$	[N.Apalana 1
I	fα	and β are the zeroe	es of the quadratic	polynomial f (x) = $x^2 + 2x + 1$, the	n ^{α 'β} is	[Marks:1]
	Α.	2				
	В.	0				
	C.	-1				
	D.	-2				
5] 1	he p	pair of equations y =	= 0 and y = -7 has	:		[Marks:1]
	A.	infinitely many sol	lutions			
	В.	two solutions				
	C.	one solution				
	D.	no solution				
6] H	low	many prime factors	s are there in prim	ne factorization of 5005?		[Marks:1]
	A.	7				
	В.	6				
	C.	2				
	D.	4				
7] \	Whic	ch of the following i	is defined?			[Marks:1]

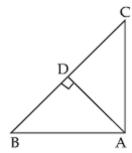
Submitted by student /visitor Download from: http://jsuniltutorial.weebly.com/

sec 90°

- В. cot 0°
- C. tan 90°
- D. cosec 90°
- 8] If $\sin (A - B) = \frac{1}{2}$ and $\cos (A + B) = \frac{1}{2}$, then the value of B is:

[Marks:1]

- В. 60°
- C. 45°
- 15°
- 9] Use Euclid's division lemma to show that square of any positive integer is either of form 3m or 3m + 1 [Marks:2] for some integer m.
- 10] What must be added to polynomial $f(x) = x^4 + 2x^3 2x^2 + x 1$ so that the resulting polynomial is exactly [Marks:2] divisible by $x^2 + 2x - 3$?
- 11] Determine a and b for which the following system of linear equations has infinite number of solutions [Marks:2] 2x - (a - 4)y = 2b + 1; 4x - (a - 1)y = 5b - 1.
- 12] In figure $\angle BAC = 90^{\circ}$, AD $\perp BC$. Prove that: $AB^2 + CD^2 = BD^2 + AC^2$.



[Marks:2]

13] If $\sqrt{3} \tan \theta = 3 \sin \theta$, then prove that $\sin^2 \theta - \cos^2 \theta =$ OR

- If $7 \sin^2 \theta + 3 \cos^2 \theta = 4$, then prove that $\sec \theta + \csc \theta = 2 +$
- 14] Construct a more than cumulative frequency distribution table for the given data:

Class	50 -	60 -	70 -	80 -	90 -	100 -
Interval	60	70	80	90	100	110
Frequency	12	15	17	21	23	19

[Marks:2]

[Marks:2]

15] Prove that $3 - \sqrt{5}$ is an irrational number.

OR Prove that $\sqrt{n-1} + \sqrt{n+1}$ is an irrational number. [Marks:3]

16] Solve for x and y:

$$\frac{x}{a} + \frac{y}{b} = 2$$
; ax - by = $a^2 - b^2$

[Marks:3]

17] Find the missing frequency for the given data if mean of distribution is 52.

[Marks:3]

Wages	10 - 20	20 - 30	30 - 40	40 - 50	50 - 60	60 - 70	70 - 80
(In Rs.)							
No. of workers	5	3	4	f	2	6	13

OR

Find the mean of following distribution by step deviation method.

Daily Expenditure :	100 - 150	150 - 200	200- 250	250 - 300	300- 350
No. of householders :	4	5	12	2	2
		l	l	l	l

18] Prema invests a certain sum at the rate of 10% per annum of interest and another sum at the rate of 8% per annum get an yield of Rs 1640 in one year's time. Next year she interchanges the rates and gets a yield of Rs 40 less than the previous year. How much did she invest in each type in the first year? OR

[Marks:3]

Six years hence a man's age will be three times his son's age and three years ago, he was nine times as old as his son. Find their present ages.

19] If one solution of the equation $3x^2 = 8x + 2k + 1$ is seven times the other. Find the solutions and the value of k.

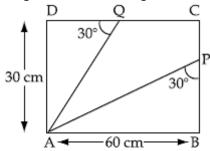
[Marks:3]

20] If $\,\theta\,\text{and}\,\,\varphi$ are the acute angles of a right triangle, and

If
$$\frac{\sin^2\theta}{\cos^4\phi} + \frac{\sin^4\phi}{\cos^2\theta} = 1$$
, then prove that $\frac{\cos^4\theta}{\sin^2\phi} + \frac{\cos^2\phi}{\sin^4\theta} = 1$

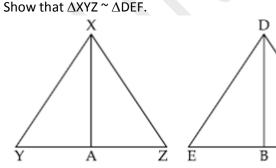
[Marks:3]

21] In figure ABCD is rectangle in which segments AP and AQ are drawn. Find the length (AP + AQ).



[Marks:3]

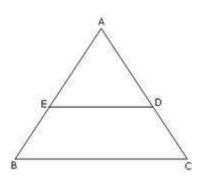
22] In figure sides XY and YZ and median XA of a triangle XYZ are respectively proportional to sides DE, EF and median DB of Δ DEF.



[Marks:3]

23] In the figure below triangle AED and trapezium EBCD are such that the area of the trapezium is three AE [Marks:3]

times the area of the triangle. Find the ratio $\,^{\mbox{\scriptsize AB}}\,$.



24] Find the median for the following frequency distribution:

Class Interval	10 - 19	20 - 29	30 - 39	40 - 49	50 - 59	60 - 69	70 - 79
Frequency	2	4	8	9	4	2	1

[Marks:3]

25] Find all zeroes of polynomial.

 $4x^4 - 20x^3 + 23x^2 + 5x - 6$ if two of its zeroes are 2 and 3.

[Marks:4]

26] Prove the following:

Find the value of

If a line is drawn parallel to one side of a triangle to intersect the other two sides in distinct points, the other two sides are divided in the same ratio.

[Marks:4]

OR

Prove that in a right triangle, the square of the hypotenuse is equal To the sum of the squares of the other two sides.

$$\frac{27]}{1+\sin A} = \sec^2 A \left(\frac{1-\sin A}{1+\sec A}\right)$$

OR

[Marks:4]

$$\frac{1 + \cos \theta - \sin \theta}{\cos \theta - 1 + \sin \theta} = \csc \theta + \cot \theta.$$

28]

$$\frac{\sec(90^{\circ} - 8).\cos\sec\theta - \tan(90^{\circ} - 8)\cot\theta + \cos^{2}25^{\circ} + \cos^{2}65^{\circ}}{3\tan 27^{\circ}\tan 63^{\circ}}$$

[Marks:4]

29] Form the pair of linear equations in the following problems, and find

the solution graphically.
"10 students of Class X took part in a Mathematics quiz. If the number of girls is 4 more than the number of boys, find the number of boys and girls who took part in the quiz."

[Marks:4]

30] The following table gives production yield per hectare of wheat of 100 farms of a village.

Production yield (in kg/ha)	50 - 55	55 - 60	60 - 65	65 - 70	70 - 75	75 - 80
Number of farms	2	8	12	24	38	16

[Marks:4]

Change the distribution to a more than type distribution and draw ogive.

31] Prove that ratio of the areas of two similar triangles is equal to the ratio of the square of their corresponding sides.

[Marks:4]

32] Prove that:

$$(\csc A - \sin A)(\sec A - \cos A) = \frac{1}{\tan A + \cot A}$$
 [Marks:4]

33] Show that the square of any positive integer cannot be of the form 5q + 2 or 5q + 3 for any integer q. [Marks:4] Submitted by student /visitor Download from: http://jsuniltutorial.weebly.com/

34] Calculate the mode of the following frequency distribution table.

	0 1 /
Marks	No. of Students
above 25	52
above 35	47
above 45	37
above 55	17
above 65	8
above 75	2
above 85	0

Solutions Paper- 1:

1] Let x1,x2,x3......,x12 be the 12 values of the given data. Let the 13th observation be x13.

2] Given, triangle ABC is right angled at C. Therefore,

$$A+B=90o \text{ or } A=90o-B$$

1+cot2A = 1 + cot2(90o-B) = 1+tan2B = sec2B

3] A real number is an irrational number when it has a non terminating non repeating decimal representation.

4]
$$x2 + 2x + 1 = (x+1)2$$

 $\Rightarrow x = -1$
? = ?= -1
1/? and 1/? are also -1. 1/? + 1/? = -2

5] Since the x-axis y=0 does not intersect y=-7 at any point.

6] Since
$$5005 = 5 \times 7 \times 11 \times 13$$
 is the prime factor is at ion of 5005.

7] Because cosec 90°=1, others are not defined.

8]
$$\sin (A - B) = \frac{1}{2}$$
 and $\cos (A + B) = \frac{1}{2}$,
 $(A - B) = 30^{\circ}$ and $(A + B) = 60^{\circ}$
Solving, we get $B = 15^{\circ}$

- 9] If a and b are one two positive integers. Then a = bq + r, $0 \le r \le b$ Let b = 3 Therefore, r = 0, 1, 2 Therefore, a = 3q or a = 3q + 1 or a = 3q + 2 If a = 3q a = 3q + 2 a = 3q + 1 a = 3q a = 3
- 10] Given polynomial P(x) = x4 + 2x3 2x2 + x 1Let g(x) must be added to it.

So, number to be added=-(-x+2) = x-2

11] For infinite number of solution,

$$\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$$

$$\Rightarrow \frac{2}{4} = \frac{a - 4}{a - 1} = \frac{2b + 1}{5b - 1}$$

Consider

$$\frac{2}{4} = \frac{a-4}{a-1} \Rightarrow 4a-16 = 2a-2 \Rightarrow 2a = 14 \Rightarrow a = 7$$

Again,

$$\frac{2}{4} = \frac{2b+1}{5b-1} \Rightarrow 10b-2 = 8b+4 \Rightarrow 2b = 6 \Rightarrow b = 3$$

12] In
$$\triangle ABD$$
, $AB^2 = AD^2 + BD^2$...(1)
In $\triangle ACD$ AC2 = AD2 + CD2 ... (2)

[By Pythagoras theorem]

$$AB^{2} - AC^{2} = AD^{2} - AD^{2} + BD^{2} - CD^{2}$$

$$\Rightarrow AB^{2} + CD^{2} = BD^{2} + AC^{2}$$

Hence proved.

$$\frac{\sqrt{3} \sin \theta}{\cos \theta} = 3 \sin \theta \Rightarrow \cos \theta = \frac{1}{\sqrt{3}}$$
$$\sin^2 \theta - \cos^2 \theta = 1 - 2 \cos^2 \theta = 1 - 2 \left(\frac{1}{\sqrt{3}}\right)^2 = 1 - \frac{2}{3} = \frac{1}{3}$$

OR

Consider,

$$7 \sin 2\theta + 3 \cos 2\theta = 4$$

$$\Rightarrow$$
 7Sin2 θ + 3 (1 - sin2 θ) = 4

$$\Rightarrow$$
 7Sin2 θ + 3 - 3sin2 θ = 4

$$\Rightarrow$$
 4Sin2 $\theta = 1$

$$\Rightarrow_{\text{Sin }\theta} = \frac{1}{2} \Rightarrow \theta = 30^{\circ}$$

Thus, Sec 300 + Cosec300 =
$$\frac{2}{\sqrt{3}}$$
 + 2

14]	Class Interval	Cumulative Frequency
	More then 50	108
	More then 60	95
	More then 70	80

More then 80	63
More then 90	42
More then 102	19

15] Let 3 - $\sqrt{5}$ be a rational number.

⇒3-
$$\sqrt{5} = \frac{p}{q}$$
 [p,q are integers, 2 ≠0]
⇒ $\frac{3q - p}{q} = \sqrt{5}$

Here,

LHS = Rational No.

RHS = irrational No.

But, Irrational no ≠ Rational no

 \Rightarrow our assumption is wrong $3 - \sqrt{5}$ is an irrational.

OR

Let us assume to the contrary, that $\sqrt{n-1} + \sqrt{n+1}$ is a rational number.

$$\Rightarrow (\sqrt{n-1} + \sqrt{n+1})^2$$
 is rational.

$$\Rightarrow_{\text{(n-1)+(n+1)-2}} (\sqrt{\text{n-1}} \times \sqrt{\text{n+1}}) \text{ is rational}$$

$$\Rightarrow_{2n+2} \sqrt{n^2-1}$$
 is rational

But we know that $\sqrt{r^2-1}$ is an irrational number

So $2n+2\sqrt{n^2-1}$ is also an irrational number

So our basic assumption that the given number is rational is wrong.

Hence, $\sqrt{n-1} + \sqrt{n+1}$ is an irrational number.

$$ax - by = a^2 - b^2$$

Multiplying (1) with a and (2) with b, we get

$$abx' + a^{2}y = 2a^{2}b$$

$$abx' - b^{2}y = a^{2}b - b^{3}$$

$$- + - +$$

$$y(a^{2} + b^{2}) = a^{2}b + b^{3}$$

$$\Rightarrow y(a^{2} + b^{2}) = b(a^{2} + b^{2})$$

From
$$(1)$$
, $bx + ab = 2ab$

$$\Rightarrow$$
 bx = ab

$$\Rightarrow_{x=a}$$

Hence, x = a and y = b.

	Tierice, x = a and y = b.							
17]	C.I	Fi	Xi	FiXi				
	10 - 20	5	15	75				
	20 - 30	3	25	75				
	30 - 40	4	35	140				
	40 - 50	F	45	45f				
	50 - 60	2	55	110				
	60 - 70	6	65	390				
	70 - 80	13	75	975				

	33+f		1765+45f
\sum	fi xi		
₹	<u> </u>		
Mean = 2] fi		
1765	+ 45f		
$52 = \frac{1765}{33}$			
55	· 干 ·		
⇒7f = 17	65 – 17	716=	49

$$\Rightarrow f = 7$$

OR

C.I	fi	xi	di	fidi
100 - 150	4	125	-2	-8
150 - 200	5	175	-1	-5
200 - 250	12	225	0	0
250 - 300	2	275	1	2
300 - 350	2	325	2	4
				-7

Where:
$$d_i = \frac{x_i - 225}{50}$$

$$\bar{x} = 225 - \frac{7}{25} \times 50^2 = 225 - 14 = 211$$

18] Let us assume that Prema invests Rs x @10% and Rs y @8% in the first year.

We know that

Interest =
$$\frac{PRT}{100}$$

ATQ,

$$\frac{\times \times 10 \times 1}{100} + \frac{y \times 8 \times 1}{100} = 1640$$

$$\Rightarrow$$
 10x + 8y = 164000 ...(i)

After interchanging,

$$\frac{y \times 10 \times 1}{100} + \frac{x \times 8 \times 1}{100} = 1600$$

we get 10y+8x=160000

8x+10y=160000 ...(ii)

Adding (i) and (ii)

18x+18y=324000

$$\Rightarrow$$
 x + y = 18000 ... (iii)

Subtracting (ii) from (i),

2x-2y=4000

$$\Rightarrow$$
 x - y = 2000 ...(iv)

Adding (iii) and (iv)

2x=20000

 \Rightarrow x = 10000.

Substituting this value of x in (iii)

y = 8000

So the sums invested in the first year at the rate 10% and 8% are Rs 10000 and Rs 8000 respectively.

OR

Let present age of man = x yearsLet present age of son = y years

Case (i):6 years hence the equation will be:

...(i)

$$x + 6 = 3 (y + 6)$$

 $\Rightarrow x - 3y = 12$

Case (ii):3 years ago the equation will be:

$$x - 3 = 9(y - 3)$$

 $\Rightarrow x - 9y = -24$...(ii)

Solving (1) and (2), we get

$$x = 30 y = 6$$
.

19] Let α is one zero. $\beta = 7 \alpha$ is another zero then

$$\Rightarrow_{8} \alpha = \overline{3} \Rightarrow \alpha = \overline{3}_{and} \beta = \overline{3}$$

Now,

$$\alpha\beta = -\frac{(2k+1)}{3}$$

$$\frac{1}{3} \times \frac{7}{3} \times \cancel{3} = -2k - 1$$

$$\Rightarrow \frac{7}{3} + 1 = -2k$$

$$\Rightarrow \frac{7}{3} + 1 = -21$$

$$\Rightarrow -2k = \frac{10}{3}$$

$$\Rightarrow k = -\frac{5}{3}$$

^{20]} The two angles $\,^{\theta}$ and $_{\phi}$ being the acute angles of a right triangle, must be complementary angles.

So,
$$\theta = (90^{\circ} - \phi)$$
 and $\phi = (90^{\circ} - \theta)$

Given
$$\frac{\sin^2 \theta}{\cos^4 \phi} + \frac{\sin^4 \phi}{\cos^2 \theta} = 1$$

Substituting, $\theta = 90^{\circ} - \phi$ and $\phi = 90^{\circ} - \theta$ in above equation

$$\frac{\sin^2(90^{\circ} - \phi)}{\cos^4(90^{\circ} - \theta)} + \frac{\sin^4(90^{\circ} - \theta)}{\cos^2(90^{\circ} - \phi)} = 1$$

$$\Rightarrow \frac{\cos^2 \phi}{\sin^4 \theta} + \frac{\cos^4 \theta}{\sin^2 \phi} = 1$$

$$\Rightarrow \frac{\cos^4 \theta}{\sin^2 \phi} + \frac{\cos^2 \phi}{\sin^4 \theta} = 1$$

21] Here,
$$\frac{AB}{AP} = \sin 30^{\circ} \Rightarrow \frac{60}{AP} = \frac{1}{2} \Rightarrow 120 \text{ cm}$$

Also,
$$\frac{AD}{AQ} = \sin 30^{\circ} \Rightarrow \frac{30}{AQ} = \frac{1}{2} \Rightarrow AQ = 60 \text{ cm}$$

Now,
$$AP + AQ = 120 + 60 = 180 \text{ cm}$$

22] Given: In ΔΧΥΖ and ΔDEF

$$\frac{XY}{DE} = \frac{YZ}{EF} = \frac{XA}{DB} \qquad ...(1)$$

Toprove: $\Delta XYZ \sim \Delta DEF$

Proof: Since XA and DB are medians

$$2YA = YZ$$

From(1) and (2)

$$\frac{XY}{DE} = \frac{2YA}{2EB} = \frac{XA}{DB}$$

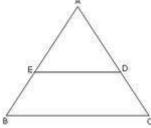
$$\Rightarrow$$
 Δ XYA \sim Δ DEB

Now in AXYZ and ADEF

$$\frac{XY}{DE} = \frac{YZ}{EF}$$
 from (1)

$$\angle Y = \angle E$$
 from (3)

$$\Rightarrow \Delta$$
XYZ $\sim \Delta$ DEF



Let the area of triangle =x sq units

Area of trapezium = 3x sq units

Area triangle ABC = x + 3x = 4x sq units

Now,

Consider triangles AED and ABC,

ED II BC...given

 \angle AED = \angle ABC Corresponding angles

 $\angle A = \angle A$ Common

$$\Rightarrow \frac{\text{Area } (\triangle AEF)}{\text{Area}(\triangle ABC)} = \left(\frac{AE}{AB}\right)^2$$
 (since Ratio of areas of two similar triangles is equal to ratio of square of corresponding sides)

corresponding sides)

$$\frac{AE}{AB} = \frac{1}{2}$$

24]	C.I	F	Cf
	9.5 - 19.5	2	2
	19.5 - 29.5	4	6
	29.5 - 39.5	8	14
	32.5 - 49.5	9	23
	49.5 - 59.5	4	27
	59.5 - 69.5	2	29
	69.5 - 79.5	1	30

Here,
$$I = 39.5 \text{ c.f} = 14 \text{ f} = 9 \text{ h} = 10$$

$$M = 39.5 + \frac{10}{9} (15 - 14) \Rightarrow 39.5 + 1.1 = 40.6$$

Submitted by student /visitor Download from: http://jsuniltutorial.weebly.com/

25] Given 2 and 3 are the zeroes of the polynomial.

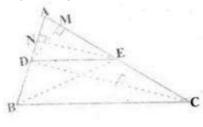
Thus(x - 2) (x - 3) are factors of this polynomial.

$$4x4 - 20x3 + 23x2 = 5x - 6 = (x2 - 5x + 6) (4x2 - 1)$$

Thus,
$$4x4 - 20x3 + 23x2 + 5x - 6 = (x - 2)(x - 3)(2x - 1)(2x + 1)$$

Therefore, 2,3,
$$\frac{1}{2}$$
, $\frac{-1}{2}$ are zeroes

26] Given: A triangle ABC in which a line parallel to side BC intersects other two sides AB and AC at D and E respectively



To prove that
$$\frac{AD}{BD} = \frac{AE}{EC}$$

Construction: Let us join BE and CD and then draw DM \perp AC and EN \perp AB.

$$\Delta ADE \left(= \frac{1}{2} \text{ base } \times \text{ height} \right) = \frac{1}{2} AD \times EN.$$

Proof: Now, area of

Letus denote the area of \triangle ADE is denoted as are (ADE).

So,
$$\operatorname{ar}(\mathsf{ADE}) = \frac{1}{2}\,\mathsf{AD}\,\times\mathsf{EN}$$

Similarly, $\operatorname{ar}(\mathsf{BDE}) = \frac{1}{2}\,\mathsf{DB}\,\times\mathsf{EN}$.
 $\operatorname{ar}(\mathsf{ADE}) = \frac{1}{2}\,\mathsf{AE}\,\times\mathsf{DM}$ and $\operatorname{ar}(\mathsf{DEC}) = \frac{1}{2}\,\mathsf{EC}\,\times\mathsf{DM}$.
Therefore, $\frac{\operatorname{ar}(\mathsf{ADE})}{\operatorname{ar}(\mathsf{BDE})} = \frac{\frac{1}{2}\,\mathsf{AD}\,\times\mathsf{EN}}{\frac{1}{2}\,\mathsf{DB}\,\times\mathsf{EN}} = \frac{\mathsf{AD}}{\mathsf{DB}}$

and
$$\frac{\operatorname{ar}(ADE)}{\operatorname{ar}(DEG)} = \frac{\frac{1}{2} AE \times DM}{\frac{1}{2} EC \times DM} = \frac{AE}{EC}$$

Note that \triangle BDE and DEC are on the same base DE and between the same parallels BC and DE. So, ar(BDE) = ar(DEG)

Therefore, from (1), (2) and (3), we have:

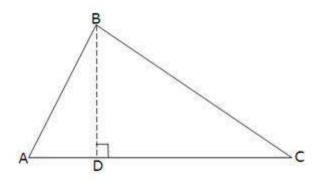
$$\frac{AD}{DB} = \frac{AE}{EC}$$

OR

Given: A right triangle ABC right angled at B.

To prove: that AC2 = AB2 + BC2

Construction: Let us draw BD \perp AC (See fig.)



Proof:

Now, \triangle ADB \sim \triangle ABC (Using Theorem: If a perpendicular is drawn from the vertex of the right angle of a right triangle to the hypotenuse, then triangles on both sides of the perpendicular are similar to the whole triangle and to each other)

and to each other)
$$\frac{AD}{AB} = \frac{AB}{AC}$$
(Sides are proportional)
Or, AD.AC = AB2 (1)
Also, \triangle BDC \sim \triangle ABC (By Theorem)
$$\frac{CD}{SO} = \frac{BC}{AC}$$
Or, CD. AC = BC2 (2)
Adding (1) and (2),
AD. AC + CD. AC = AB2 + BC2
OR, AC (AD + CD) = AB2 + BC2

OR, AC.AC = AB2 + BC2

AC2 = AB2 + BC2

OR

Hence proved.

27] LHS =
$$\frac{\cot^2 A (\sec A - 1)}{1 + \sin A}$$

$$= \frac{\cot^2 A (\sec A - 1)}{1 + \sin A} \times \frac{\sec A + 1}{\sec A + 1} \times \frac{1 - \sin A}{1 - \sin A}$$

$$= \frac{\cot^2 A (\sec^2 A - 1)}{(\sec A + 1) (1 + \sin A)} \times \frac{1 - \sin A}{1 - \sin A}$$

$$= \frac{\cot^2 A \tan^2 A (1 - \sin A)}{(\sec A + 1) (1 - \sin^2 A)}$$

$$= \frac{(1 - \sin A)}{(\sec A + 1) \cos^2 A}$$

$$= \sec^2 A \left(\frac{1 - \sin A}{1 + \sec A}\right)$$

$$= RHS$$
OR
$$\frac{1 + \cos \theta - \sin \theta}{\cos \theta - 1 + \sin \theta} = \csc \theta + \cot \theta$$

Dividing numerator and denominator of LHS by $\sin \theta$, we get

Submitted by student /visitor Download from: http://jsuniltutorial.weebly.com/

$$\begin{aligned} \mathsf{LHS} &= \frac{\cos \mathsf{ec} \; \theta + \cot \theta - 1}{\cot \theta - \cos \mathsf{ec} \; \theta + 1} \\ &= \frac{\left(\cos \mathsf{ec} \; \theta + \cot \theta \right) - \left(\cos \mathsf{ec}^2 \; \theta - \cot^2 \; \theta \right)}{\left(\cot \theta - \csc \theta + 1 \right)} \\ &= \frac{\left(\cos \mathsf{ec} \; \theta + \cot \theta \right) - \left(\cos \mathsf{ec} \; \theta + \cot \theta \right) \left(\cos \mathsf{ec} \; \theta - \cot \theta \right)}{\left(\cot \theta - \csc \theta + \cot \theta \right)} \\ &= \frac{\left(\cos \mathsf{ec} \; \theta + \cot \theta \right) \left(1 - \cos \mathsf{ec} \; \theta + \cot \theta \right)}{\left(\cot \theta - \csc \theta + \cot \theta \right)} \\ &= \cos \mathsf{ec} \; \theta + \cot \theta \\ &= \mathsf{RHS} \end{aligned}$$

28] U sing sec
$$(90^{\circ} - \theta)$$
 = cos ec θ , $\tan(90^{\circ} - \theta)$ = cot θ
and $\cos(90^{\circ} - \theta)$ = sin θ

$$\frac{\sec(90^{\circ} - \theta).\cos\sec\theta - \tan(90^{\circ} - \theta)\cot\theta + \cos^{2}25^{\circ} + \cos^{2}65^{\circ}}{3\tan 27^{\circ}\tan 63^{\circ}}$$

$$= \frac{\cos \cot\theta.\cos \cot\theta.\cot\theta + \cos^{2}(90^{\circ} - 65^{\circ}) + \cos^{2}65^{\circ}}{3\tan(90^{\circ} - 63^{\circ})\tan 63^{\circ}}$$

$$= \frac{\cos \cot^{2}\theta - \cot^{2}\theta + \sin^{2}65^{\circ} + \cos^{2}65^{\circ}}{3\cot 63^{\circ}\tan 63^{\circ}}$$
[Since, $\sin^{2}\theta + \cos^{2}\theta = 1$ and $\csc^{2}\theta - \cot^{2}\theta = 1$]
$$= \frac{1+1}{3} = \frac{2}{3}$$

29] Let the number of girls and boys in the class be x and y respectively. According to the given conditions, we have:

$$x + y = 10$$

$$x - y = 4$$

$$x + y = 10 \Rightarrow x = 10 - y$$

Three solutions of this equation can be written in a table as follows:

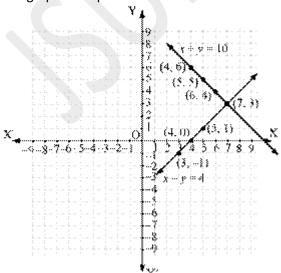
Х	5	4	6
у	5	6	4

$$x - y = 4 \Rightarrow x = 4 + y$$

Three solutions of this equation can be written in a table as follows:

Х	5	4	3
У	1	0	-1

The graphical representation is as follows:

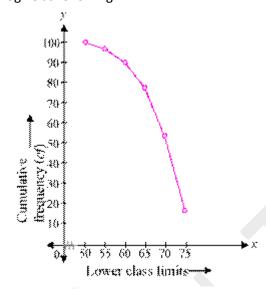


From the graph, it can be observed that the two lines intersect each other at the point (7, 3). So, x = 7 and y = 3.

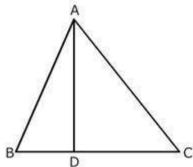
30] We can obtain cumulative frequency distribution of more than type as following:

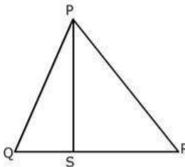
	, , , , , , , , , , , , , , , , , , , ,
Production yield	Cumulative frequency
(lower class limits)	
more than or equal to 50	100
more than or equal to 55	100 - 2 = 98
more than or equal to 60	98 - 8 = 90
more than or equal to 65	90 - 12 = 78
more than or equal to 70	78 - 24 = 54
more than or equal to 75	54 - 38 = 16

Now taking lower class limits on x-axis and their respective cumulative frequencies on y-axis we can obtain its ogive as following.



31]





Statement: The ratio of the areas of two

similar triangles is equal to the square of the ratio of their corresponding sides.

$$\frac{AB^2}{BC^2} = \frac{BC^2}{BC^2} = \frac{AC^2}{BC^2}$$

Given: DABC ~ DPQR To Prove: $\frac{AB^2}{PQ^2} = \frac{BC^2}{QR^2} = \frac{AC^2}{PR^2}$ Construction: Draw AD^BC and PS^QR

$$\frac{\operatorname{ar}(\mathsf{ABC})}{\operatorname{ar}(\mathsf{PQR})} = \frac{\frac{1}{2} \times \mathsf{BC} \times \mathsf{AD}}{\frac{1}{2} \times \mathsf{QR} \times \mathsf{PS}} = \frac{\mathsf{BC}}{\mathsf{QR}} \times \frac{\mathsf{AD}}{\mathsf{PS}}$$
Proof:

DADB ~ DPSQ (AA)

Therefore, $\frac{AD}{PS} = \frac{AB}{PQ}$... (iii)

... (iv)

But DABC ~ DPQR Therefore,

$$\frac{\text{ar}(ABC)}{\text{ar}(PQR)} = \frac{BC}{QR} \times \frac{BC}{QR} = \frac{BC^2}{QR^2}$$

$$\frac{\text{ar}(ABC)}{\text{ar}(PQR)} = \frac{AB^2}{PQ^2} = \frac{BC^2}{QR^2} = \frac{AC^2}{PR^2}$$

From (iii)

32] L.H.S =
$$(\cos e A - \sin A)(\sec A - \cos A)$$

= $\left(\frac{1}{\sin A} - \sin A\right)\left(\frac{1}{\cos A} - \cos A\right)$

$$= \left(\frac{1 - \sin^2 A}{\sin A}\right) \left(\frac{1 - \cos^2 A}{\cos A}\right)$$
$$= \frac{\left(\cos^2 A\right) \left(\sin^2 A\right)}{\sin A \cos A}$$

$$R.H.S = \frac{1}{\tan A + \cot A}$$

$$= \frac{1}{\frac{\sin A}{\cos A} + \frac{\cos A}{\sin A}} = \frac{1}{\frac{\sin^2 A + \cos^2 A}{\sin A \cos A}}$$

$$= \frac{\sin A \cos A}{\sin^2 A + \cos^2 A}$$

Hence, L.H.S = R.H.S

33] Let
$$5q + 2$$
, $5q + 3$ be any positive integers

$$(5q + 2)2 = 25q2 + 20q + 4 = 5q (5q + 4) + 4$$
 is not of the form $5q + 2$

Similarly for
$$2^{nd}$$
 $(5q + 3)2 = 25q2 + 30q + 9$

=5q(5q+6)+9 is not of the form 5q+3

So, the square of any positive integer cannot be of the form5q+2 or 5q+3 For any integer q

	, ,	· '
34]	Marks	Frequency
	25 - 35	5
	35 - 45	10
	45 - 55	20
	55 - 65	9
	65 - 75	6
	75 - 85	2
	Total	52

Here the maximum frequency is 20 and the corresponding class is 45-55.So,45-55 is the modal class.

We have,
$$l=45$$
, $h=10$, $f=20$, $f_1=10$, $f_2=9$

$$\mathsf{Mode} = \ell_{+} \left[\frac{f - f_{1}}{2f - f_{1} - f_{2}} \right] \times h = 45 + \left[\frac{20 - 10}{40 - 10 - 9} \right] \times 10$$

Mode=49.7