ACBSE Coaching for Mathematics and Science

Class X – Chapter: Coordinate Geometry: Section formula

Let $A(x_1, y_1)$ and $B(x_2, y_2)$ be two distinct points such that a point P(x, y) divides AB internally in the ratio l:m. That is, $\frac{AP}{PB} = \frac{l}{m}$

From the Fig. 5.2, we get

$$AF = CD = OD - OC = x - x_1$$

$$PG = DE = OE - OD = x_2 - x$$
 Also,
$$PF = PD - FD = y - y_1$$

$$BG = BE - GE = y_2 - y$$

Now, $\triangle AFP$ and $\triangle PGB$ are similar.

Thus,
$$\frac{\widehat{A}F}{PG} = \frac{PF}{BG} = \frac{AP}{PB} = \frac{\widehat{l}}{m}$$

Thus, the point P which divides the line segment joining the two points $A(x_1, y_1)$ and $B(x_2, y_2)$ internally in the ratio l:m is

$$P\!\!\left(\frac{lx_2^{}+mx_1^{}}{l+m}^{},\!\frac{ly_2^{}+my_1^{}}{l+m}^{}\right)$$

This formula is known as section formula.

ACBSE Coaching for Mathematics and Science

Results

(i) If P divides a line segment AB joining the two points $A(x_1, y_1)$ and $B(x_2, y_2)$ externally in the ratio l:m, then the point P is $\left(\frac{lx_2 - mx_1}{l - m}, \frac{ly_2 - my_1}{l - m}\right)$. In this case $\frac{l}{m}$ is negative.

(ii) Midpoint of AB

If M is the midpoint of AB, then M divides the line segment AB internally in the ratio 1:1. By substituting l = 1 and m = 1 in the section formula, we obtain

the midpoint of AB as
$$M\left(\frac{x_2+x_1}{2}, \frac{y_2+y_1}{2}\right)$$
.

The midpoint of the line segment joining the points

$$A(x_1, y_1)$$
 and $B(x_2, y_2)$ is $\left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$.

Centroid of a triangle

Consider a $\triangle ABC$ whose vertices are $A(x_1, y_1)$, $B(x_2, y_2)$ and $C(x_2, y_3)$. Let AD,

BE and CF be the medians of the $\triangle ABC$.

We know that the medians of a triangle are concurrent and the point of concurrency is the centroid.

Let G(x, y) be the centroid of $\triangle ABC$.

Now the midpoint of *BC* is
$$D\left(\frac{x_2 + x_3}{2}, \frac{y_2 + y_3}{2}\right)$$

By the property of triangle, the centroid G divides the median AD internally in the ratio 2:1

... By section formula, the centroid

$$G(x, y) = G\left(\frac{2\frac{(x_2 + x_3)}{2} + 1(x_1)}{2 + 1}, \frac{2\frac{(y_2 + y_3)}{2} + 1(y_1)}{2 + 1}\right)$$
$$= G\left(\frac{x_1 + x_2 + x_3}{3}, \frac{y_1 + y_2 + y_3}{3}\right)$$

The centroid of the triangle whose vertices are

$$(x_1, y_1), (x_2, y_2)$$
 and (x_3, y_3) , is $(\frac{x_1 + x_2 + x_3}{3}, \frac{y_1 + y_2 + y_3}{3})$.

ACBSE Coaching for Mathematics and Science

Example

Find the midpoint of the line segment joining the points (3,0) and (-1,4).

Solution Midpoint M(x, y) of the line segment joining the points (x_1, y_1) and (x_2, y_2) is

$$M(x, y) = M\left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$$

 \therefore Midpoint of the line segment joining the points (3,0) and (-1,4) is

$$A(3, 0)$$
 $M(x, y)$ $B(-1,4)$

$$M(x, y) = M(\frac{3-1}{2}, \frac{0+4}{2}) = M(1,2).$$

Find the point which divides the line segment joining the points (3,5) and (8,10) internally in the ratio 2:3.

Solution Let A(3,5) and B(8,10) be the given points.

Let the point P(x,y) divide the line AB internally in the ratio 2:3.

$$A(3, 5)$$
 $P(x, y)$ $B(8,10)$ Fig. 5.5

By section formula, $P(x, y) = P\left(\frac{lx_2 + mx_1}{l + m}, \frac{ly_2 + my_1}{l + m}\right)$

Here $x_1 = 3, y_1 = 5, x_2 = 8, y_2 = 10$ and l = 2, m = 3

$$P(x,y) = P\left(\frac{2(8) + 3(3)}{2+3}, \frac{2(10) + 3(5)}{2+3}\right) = P(5,7)$$

In what ratio does the point P(-2, 3) divide the line segment joining the points A(-3, 5) and B(4, -9) internally?

Solution Given points are A(-3,5) and B(4,-9).

Let P(-2, 3) divide AB internally in the ratio l:m

By the section formula,

$$l$$
 m
 $A(-3,5)$ $P(-2,3)$ $B(4,-9)$
(1) Fig. 5.6

$$P\left(\frac{lx_2 + mx_1}{l + m}, \frac{ly_2 + my_1}{l + m}\right) = P(-2, 3)$$

Here
$$x_1 = -3$$
, $y_1 = 5$, $x_2 = 4$, $y_2 = -9$.

SE Coaching for Mathematics and Science

(1)
$$\Longrightarrow \left(\frac{l(4) + m(-3)}{l + m}, \frac{l(-9) + m(5)}{l + m}\right) = (-2, 3)$$

Equating the x-coordinates, we ge

$$\frac{4l - 3m}{l + m} = -2$$

$$\implies 6l = m$$

$$\frac{l}{m} = \frac{1}{6}$$
i.e., $l: m = 1: 6$

Hence P divides AB internally in the ratio 1:6

Find the points of trisection of the line segment joining (4, -1) and (-2, -3).

Solution Let A(4,-1) and B(-2,-3) be the given points.

Let P(x,y) and Q(a,b) be the points of trisection of AB so that AP = PQ = QB

Hence P divides AB internally in the ratio 1:2 and Q divides AB internally in the ratio 2:1

$$A(4,-1)$$
 P $B(-2,-3)$

By the section formula, the required points are ٠.

$$P\left(\frac{1(-2)+2(4)}{1+2}, \frac{1(-3)+2(-1)}{1+2}\right)$$
 and $A(4,-1)$ Fig. 5.9 Q

$$A(4,-1)$$
 2 1 $B(-2,-3)$

$$\mathcal{Q}\left(\frac{2(-2)+1(4)}{2+1}, \frac{2(-3)+1(-1)}{2+1}\right)$$

$$\implies P(x,y) = P\left(\frac{-2+8}{3}, \frac{-3-2}{3}\right) \text{ and } Q(a,b) = Q\left(\frac{-4+4}{3}, \frac{-6-1}{3}\right)$$
$$= P\left(2, -\frac{5}{3}\right) = Q\left(0, -\frac{7}{3}\right).$$

Note that Q is the midpoint of PB and P is the midpoint of AQ.

Find the centroid of the triangle whose vertices are A(4, -6), B(3, -2) and C(5, 2). **Solution** The centroid G(x, y) of a triangle whose vertices are

$$(x_1, y_1)$$
, (x_2, y_2) and (x_3, y_3) is given by

$$G(x\,,\,y)=G\bigg(\frac{x_1+x_2+x_3}{3},\,\frac{y_1+y_2+y_3}{3}\bigg).$$

We have $(x_1, y_1) = (4, -6)$, $(x_2, y_2) = (3, -2)$, $(x_3, y_2) = (5, 2)$

The centroid of the triangle whose vertices are

$$(4,-6), (3,-2) \text{ and } (5,2) \text{ is}$$

$$G(x,y) = G\left(\frac{4+3+5}{3}, \frac{-6-2+2}{3}\right) = G(4,-2).$$

ACBSE Coaching for Mathematics and Science

If (7,3),(6,1),(8,2) and (p,4) are the vertices of a parallelogram taken in order, then find the value of p.

Solution Let the vertices of the parallelogram be A(7,3), B(6,1), C(8,2) and D(p,4).

We know that the diagonals of a parallelogram bisect each other.

... The midpoints of the diagonal *AC* and the diagonal *BD* coincide.

Hence $\left(\frac{7+8}{2}, \frac{3+2}{2}\right) = \left(\frac{6+p}{2}, \frac{1+4}{2}\right)$ $\implies \left(\frac{6+p}{2}, \frac{5}{2}\right) = \left(\frac{15}{2}, \frac{5}{2}\right)$

Equating the x-coordinates, we get,

$$\frac{6+p}{2} = \frac{15}{2}$$

$$\therefore p = 9$$

If C is the midpoint of the line segment joining A(4,0) and B(0,6) and if O is the origin, then show that C is equidistant from all the vertices of $\triangle OAB$.

Solution The midpoint of *AB* is
$$C(\frac{4+0}{2}, \frac{0+6}{2}) = C(2,3)$$

We know that the distance between $P(x_1,y_1)$ and $Q(x_2,y_2)$ is $\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}$.

Distance between O(0,0) and C(2,3) is

$$OC = \sqrt{(2-0)^2 + (3-0)^2} = \sqrt{13}$$
.

Distance between A(4,0) and C(2,3),

$$AC = \sqrt{(2-4)^2 + (3-0)^2} = \sqrt{4+9} = \sqrt{13}$$

Distance between B(0,6) and C(2,3),

$$BC = \sqrt{(2-0)^2 + (3-6)^2} = \sqrt{4+9} = \sqrt{13}$$

$$\therefore$$
 $OC = AC = BC$

 \therefore The point *C* is equidistant from all the vertices of the $\triangle OAB$.

Area of a triangle

ACBSE Coaching for Mathematics and Science

Let ABC be a triangle whose vertices are $A(x_1, y_1)$, $B(x_2, y_2)$, and $C(x_3, y_3)$.

Draw the lines AD, BE and CF perpendicular to x-axis.

From the figure, $ED = x_1 - x_2$, $DF = x_3 - x_1$ and

$$EF = x_3 - x_2.$$

Area of the triangle ABC

- = Area of the trapezium ABED
 - + Area of the trapezium *ADFC*
 - Area of the trapezium BEFC

$$= \frac{1}{2}(BE + AD)ED + \frac{1}{2}(AD + CF)DF - \frac{1}{2}(BE + CF)EF$$

$$= \frac{1}{2}(y_2 + y_1)(x_1 - x_2) + \frac{1}{2}(y_1 + y_3)(x_3 - x_1) - \frac{1}{2}(y_2 + y_3)(x_3 - x_2)$$

$$= \frac{1}{2} \{ x_1 y_2 - x_2 y_2 + x_1 y_1 - x_2 y_1 + x_3 y_1 - x_1 y_1 + x_3 y_3 - x_1 y_3 - x_3 y_2 + x_2 y_2 - x_3 y_3 + x_2 y_3 \}$$

Area of the $\triangle ABC$ is $\frac{1}{2} \{ x_1(y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2) \}$. sq.units.

Remember:

Suppose that the three points $A(x_1, y_1)$, $B(x_2, y_2)$ and $C(x_3, y_3)$ are collinear. Then they cannot form a triangle. Hence the area of the $\triangle ABC$ is zero.

i.e.,
$$\frac{1}{2} \{ (x_1 y_2 + x_2 y_3 + x_3 y_1) - (x_2 y_1 + x_3 y_2 + x_1 y_3) \} = 0$$

$$\implies x_1 y_2 + x_2 y_3 + x_3 y_1 = x_2 y_1 + x_3 y_2 + x_1 y_3$$

One can prove that the converse is also true.

Hence the area of $\triangle ABC$ is zero if and only if the points A, B and C are collinear.

Area of the Quadrilateral

Let $A(x_1, y_1)$, $B(x_2, y_2)$, $C(x_3, y_3)$ and $D(x_4, y_4)$ be the vertices of a quadrilateral *ABCD*.

Now the area of the quadrilateral ABCD = area of the ΔABD +area of the ΔBCD

$$=\frac{1}{2}\{(x_{1}y_{2}+x_{2}y_{4}+x_{4}y_{1})-(x_{2}y_{1}+x_{4}y_{2}+x_{1}y_{4})\}\\+\frac{1}{2}\{(x_{2}y_{3}+x_{3}y_{4}+x_{4}y_{2})-(x_{3}y_{2}+x_{4}y_{3}+x_{2}y_{4})\}$$

∴ Area of the quadrilateral *ABCD*

$$= \frac{1}{2} \{ (x_1 y_2 + x_2 y_3 + x_3 y_4 + x_4 y_1) - (x_2 y_1 + x_3 y_2 + x_4 y_3 + x_1 y_4) \}$$
 or
$$\frac{1}{2} \{ (x_1 - x_3)(y_2 - y_4) - (x_2 - x_4)(y_1 - y_3) \}$$
 sq.units

ACBSE Coaching for Mathematics and Science

Find the area of the triangle whose vertices are (1, 2), (-3, 4), and (-5, -6).

Solution

Now the area of $\triangle ABC$ is

$$= \frac{1}{2} \left\{ (x_1 y_2 + x_2 y_3 + x_3 y_1) - (x_2 y_1 + x_3 y_2 + x_1 y_3) \right\}$$

$$= \frac{1}{2} \left\{ (4 + 18 - 10) - (-6 - 20 - 6) \right\}$$

$$= \frac{1}{2} \left\{ 12 + 32 \right\} = 22. \text{ sq. units}$$

If the area of the $\triangle ABC$ is 68 sq.units and the vertices are A(6,7), B(-4,1) and C(a,-9) taken in order, then find the value of a.

Solution Area of $\triangle ABC$ is

$$\frac{1}{2}\{(6+36+7a)-(-28+a-54)\}=68$$

$$\implies (42+7a)-(a-82)=136$$

$$\implies 6a=12 \qquad : a=2$$

 $\implies 6a = 12$ $\therefore a = 2$ Show that the points A(2, 3), B(4, 0) and C(6, -3) are collinear.

Solution Area of the $\triangle ABC$ is

$$= \frac{1}{2} \{ (0 - 12 + 18) - (12 + 0 - 6) \} = \frac{1}{2} \{ 6 - 6 \} = 0.$$

:. The given points are collinear.

ACBSE Coaching for Mathematics and Science

If P(x, y) is any point on the line segment joining the points (a, 0) and (0, b), then, prove that $\frac{x}{a} + \frac{y}{b} = 1$, where $a, b \neq 0$.

Solution Now the points (x, y), (a, 0) and (0, b) are collinear.

 \therefore The area of the triangle formed by them is zero.

$$\Rightarrow ab - bx - ay = 0$$

$$bx + ay = ab$$
use: $\frac{1}{2} \begin{bmatrix} a & 0 & x & a \\ 0 & b & y & 0 \end{bmatrix}$

Dividing by ab on both sides, we get,

$$\frac{x}{a} + \frac{y}{b} = 1$$
, where $a, b \neq 0$

Find the area of the quadrilateral formed by the points (-4, -2), (-3, -5), (3, -2) and (2, 3). Solution:

Let the vertices be

$$A(-4, -2), B(-3, -5), C(3, -2)$$
 and $D(2, 3)$.

Area of the quadrilateral ABCD

$$= \frac{1}{2} \{ (20 + 6 + 9 - 4) - (6 - 15 - 4 - 12) \}$$
$$= \frac{1}{2} \{ 31 + 25 \} = 28 \text{ sq.units.}$$

For more paper keep on visiting

www.jsuniltutorial.weebly.com/