MARKING SCHEME MATHEMATICS (Subject Code-041) (PAPER CODE: 30/2/1)

Q. No.	EXPECTED OUTCOMES/VALUE POINTS	Marks
	SECTION A Questions no. 1 to 18 are multiple choice questions (MCQs) and questions number 19 and 20 are Assertion-Reason based questions of 1 mark each	
1.	Which of the following quadratic equations has sum of its roots as 4?	
	(a) $2x^2 - 4x + 8 = 0$ (b) $-x^2 + 4x + 4 = 0$	
	(c) $\sqrt{2} x^2 - \frac{4}{\sqrt{2}} x + 1 = 0$ (d) $4x^2 - 4x + 4 = 0$ (b) $-x^2 + 4x + 4 = 0$	
Sol.	$(b) - x^2 + 4x + 4 = 0$	1
2.	What is the length of the arc of the sector of a circle with radius 14 cm and of central angle 90° ?	
	(a) 22 cm (b) 44 cm	
	(c) 88 cm (d) 11 cm	
Sol.	(a) 22 cm	1
3.	If \triangle ABC \sim \triangle PQR with \angle A = 32° and \angle R = 65°, then the measure of \angle B is :	
	(a) 32° (b) 65°	
	(c) 83° (d) 97°	
Sol.	(c) 83°	1
4.	If 'p' and 'q' are natural numbers and 'p' is the multiple of 'q', then what is the HCF of 'p' and 'q'?	
	(a) pq (b) p	
	(c) q (d) p+q	
Sol.	(c) q	1
5.	The coordinates of the vertex A of a rectangle ABCD whose three vertices are given as $B(0, 0)$, $C(3, 0)$ and $D(0, 4)$ are:	
	(a) (4,0) (b) (0,3)	
	(c) (3, 4) (d) (4, 3)	
Sol.	(c) (3, 4)	1

6.	If the pair of equations $3x - y + 8 = 0$ and $6x - ry + 16 = 0$ represent coincident lines, then the value of 'r' is:	
	(a) $-\frac{1}{2}$ (b) $\frac{1}{2}$	
	(c) -2 (d) 2	
Sol.	(d) 2	1
7.	A bag contains 100 cards numbered 1 to 100. A card is drawn at random from the bag. What is the probability that the number on the card is a perfect cube? (a) $\frac{1}{20}$ (b) $\frac{3}{50}$	
	(c) $\frac{1}{25}$ (d) $\frac{7}{100}$	
Sol.	$(c)\frac{1}{25}$	1
8.	The pair of equations x = a and y = b graphically represents lines which are: (a) parallel (b) intersecting at (b, a) (c) coincident (d) intersecting at (a, b)	
Sol.	(d) intersecting at (a, b)	1
9.	If one zero of the polynomial $6x^2 + 37x - (k-2)$ is reciprocal of the other, then what is the value of k ? (a) -4 (b) -6 (c) 6 (d) 4	
Sol.	(a) – 4	1
10.	What is the total surface area of a solid hemisphere of diameter 'd'?	
	(a) $3 \pi d^2$ (b) $2 \pi d^2$ (c) $\frac{1}{2} \pi d^2$ (d) $\frac{3}{4} \pi d^2$	
Sol.	$(d)\frac{3}{4}\pi d^2$	1

11.	If three coins are tossed simultaneously, what is the probability of getting	
	at most one tail?	
	(a) $\frac{3}{8}$ (b) $\frac{4}{8}$	
	(c) $\frac{5}{8}$ (d) $\frac{7}{8}$	
Sol.	$(b)\frac{4}{8}$	1
12.	In the given figure, DE BC. If AD = 2 units, DB = AE = 3 units and	
	EC = x units, then the value of x is: A B C	
	(a) 2 (b) 3	
	(c) 5 (d) $\frac{9}{2}$	
Sol.	$(d)\frac{9}{2}$	1
13.	The hour-hand of a clock is 6 cm long. The angle swept by it between 7:20 a.m. and 7:55 a.m. is: (a) $\left(\frac{35}{4}\right)^{\circ}$ (b) $\left(\frac{35}{2}\right)^{\circ}$	
	(c) 35° (d) 70°	
Sol.	$(b) \left(\frac{35}{2}\right)^{\circ}$	1
14.	The zeroes of the polynomial $p(x) = x^2 + 4x + 3$ are given by :	
	(a) 1, 3 (b) -1, 3	
	(c) $1, -3$ (d) $-1, -3$	
Sol.	(d) -1, -3	1

15.	In the given figure, the quadrilateral PQRS circumscribes a circle. Here $PA + CS$ is equal to : $P = P + CS =$	
	(a) QR (b) PR (c) PS (d) PQ	
Sol.	(c) PS	1
16.	If α and β are the zeroes of the quadratic polynomial $p(x) = x^2 - ax - b$, then the value of $\alpha^2 + \beta^2$ is : (a) $a^2 - 2b$ (b) $a^2 + 2b$ (c) $b^2 - 2a$ (d) $b^2 + 2a$	
Sol.	(b) $a^2 + 2b$	1
17.	The area of the triangle formed by the line $\frac{x}{a} + \frac{y}{b} = 1$ with the coordinate axes is: (a) ab (b) $\frac{1}{2}$ ab (c) $\frac{1}{4}$ ab (d) 2ab	
Sol.	(b) $\frac{1}{2}$ ab	1

18.	In the given figure, AB PQ. If AB = 6 cm, PQ = 2 cm and OB = 3 cm, then the length of OP is: B Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q	
Sol.	(d) 1 cm	1
	Questions number 19 and 20 are Assertion and Reason based questions carrying 1 mark each. Two statements are given, one labelled as Assertion (A) and the other is labelled as Reason (R). Select the correct answer to these questions from the codes (a), (b), (c) and (d) as given below. (a) Both Assertion (A) and Reason (R) are true and Reason (R) is the correct explanation of the Assertion (A). (b) Both Assertion (A) and Reason (R) are true, but Reason (R) is not the correct explanation of the Assertion (A). (c) Assertion (A) is true, but Reason (R) is false. (d) Assertion (A) is false, but Reason (R) is true.	-
19.	Assertion (A): A tangent to a circle is perpendicular to the radius through the point of contact. Reason (R): The lengths of tangents drawn from an external point to a circle are equal.	
	2	
Sol.	(b) Both Assertion (A) and Reason (R) are true, but Reason (R) is not the correct explanation of the Assertion (A).	1
20.	Assertion (A): The polynomial $p(x) = x^2 + 3x + 3$ has two real zeroes. Reason (R): A quadratic polynomial can have at most two real zeroes.	
Sol.	(d) Assertion (A) is false, but Reason (R) is true.	1

	SECTION B This section comprises of Very Short Answer (VSA) type questions of 2 marks each.	
21.	Prove that $2 + \sqrt{3}$ is an irrational number, given that $\sqrt{3}$ is an irrational number.	
Sol.	Let us assume that $2 + \sqrt{3}$ is rational	
	Let $2 + \sqrt{3} = \frac{p}{q}$; $q \ne 0$ and p, q are integers	1/2
	$\Rightarrow \sqrt{3} = \frac{p - 2q}{q}$	1/2
	p and q are integers, \therefore p – 2q is an integer $\Rightarrow \frac{p-2q}{q} \text{ is a rational number}$	1/2
	$\Rightarrow \sqrt{3}$ is a rational number which contradicts our assumption that $\sqrt{3}$ is an	
	irrational number. $\Rightarrow 2 + \sqrt{3}$ is an irrational number	1/2
22(a).	If $4 \cot^2 45^\circ - \sec^2 60^\circ + \sin^2 60^\circ + p = \frac{3}{4}$, then find the value of p.	
Sol.	$4 \cot^2 45^\circ - \sec^2 60^\circ + \sin^2 60^\circ + p = \frac{3}{4}$	
	$\Rightarrow 4(1)^2 - (2)^2 + \left(\frac{\sqrt{3}}{2}\right)^2 + p = \frac{3}{4}$	1
	$\Rightarrow 4 - 4 + \frac{3}{4} + p = \frac{3}{4}$	1/2
	$\Rightarrow p = 0$ OR	1/2
22(b).	If $\cos A + \cos^2 A = 1$, then find the value of $\sin^2 A + \sin^4 A$.	
		1
Sol.	$\cos A + \cos^2 A = 1 \Rightarrow \cos A = 1 - \cos^2 A = \sin^2 A$	1
	$\therefore \sin^2 A + \sin^4 A = \cos A + \cos^2 A \ (\because \sin^2 A = \cos A)$ = 1	1
23.	Show that the points (-2, 3), (8, 3) and (6, 7) are the vertices of a	
	right-angled triangle.	
Sol.	Let the given points be A $(-2, 3)$, B $(8, 3)$ and C $(6, 7)$	
	Then, AB = 10, BC = $\sqrt{4 + 16} = \sqrt{20}$,	1
	$AC = \sqrt{64 + 16} = \sqrt{80}$	1/2

	∴ $AB^2 = BC^2 + AC^2$ ∴ the given points are the vertices of a right angled triangle.	1/2
24(a).	The length of the shadow of a tower on the plane ground is $\sqrt{3}$ times the height of the tower. Find the angle of elevation of the sun.	
Sol.	Let AB be the tower of height 'h'. $\therefore AC = \sqrt{3} h$	
	In \triangle ABC, $\tan \theta = \frac{AB}{AC} = \frac{h}{\sqrt{3} h}$	1
	$\Rightarrow \tan \theta = \frac{1}{\sqrt{3}}$	1/2
	$\Rightarrow \theta = 30^{\circ}$ OR	1/2
24(b).	The angle of elevation of the top of a tower from a point on the ground which is 30 m away from the foot of the tower, is 30°. Find the height of the tower.	
Sol.	B 36 A 36 M C	
	Height of tower = AB	
	In \triangle ABC, $\tan 30^\circ = \frac{AB}{30}$	
		1
	$\Rightarrow AB = \frac{30}{\sqrt{3}} = 10\sqrt{3}$	1
	∴ Height of Tower is $10\sqrt{3}$ m	

25.	In the given figure, O is the centre of the circle. AB and AC are tangents drawn to the circle from point A. If \angle BAC = 65°, then find the measure of \angle BOC.	
Sol.	$\angle BAC + \angle BOC = 180^{\circ}$ $\Rightarrow \angle BOC = 180^{\circ} - 65^{\circ}$	1
	⇒∠ BOC = 115° SECTION C This section comprises of Short Answer (SA) type questions of 3 marks each.	1
26(a).	Find by prime factorisation the LCM of the numbers 18180 and	
	7575. Also, find the HCF of the two numbers.	
Sol.	$18180 = 2^2 \times 3^2 \times 5 \times 101$	1/2
	$7575 = 3 \times 5^2 \times 101$	1/2
	$LCM = 2^2 \times 3^2 \times 5^2 \times 101 = 90900$	1
	$HCF = 3 \times 5 \times 101 = 1515$	1
	OR	
26(b).	Three bells ring at intervals of 6, 12 and 18 minutes. If all the	
	three bells rang at 6 a.m., when will they ring together again?	
Sol.	LCM of 6, 12, 18 = 36	2
	So, all the three bells ring together after 36 minutes at 6:36 AM	1
27.	Prove that:	
	$\left(\frac{1}{\cos\theta} - \cos\theta\right) \left(\frac{1}{\sin\theta} - \sin\theta\right) = \frac{1}{\tan\theta + \cot\theta}.$	
Sol.	LHS = $\left(\frac{1}{\cos \theta} - \cos \theta\right) \left(\frac{1}{\sin \theta} - \sin \theta\right)$	

	(4 2 0) (4 2 0)	
	$= \left(\frac{1 - \cos^2 \theta}{\cos \theta}\right) \left(\frac{1 - \sin^2 \theta}{\sin \theta}\right)$	1/2
	$=\frac{\sin^2 \theta}{\cos \theta} \times \frac{\cos^2 \theta}{\sin \theta}$	1
	$=\sin\theta\cos\theta$	
R	$RHS = \frac{1}{\tan \theta + \cot \theta} = \frac{1}{\frac{\sin \theta}{\cos \theta} + \frac{\cos \theta}{\sin \theta}}$	1/2
	$\cos \theta \sin \theta$ $\cos \theta \sin \theta$, =
	$=\frac{\cos\theta\sin\theta}{\sin^2\theta+\cos^2\theta}$	1
	$= \sin \theta \cos \theta$ $\therefore LHS = RHS$	
20	If $Q(0, 1)$ is equidistant from $P(5, -3)$ and $R(x, 6)$, find the values of x.	
	$PQ = QR \Rightarrow PQ^2 = QR^2$	
	$(5-0)^2 + (-3-1)^2 = (x-0)^2 + (6-1)^2$	1
	$\Rightarrow 25 + 16 = x^2 + 25$	1
	\Rightarrow x ² = 16	
	\Rightarrow x = 4, x = -4	$\frac{1}{2} + \frac{1}{2}$
29.	A car has two wipers which do not overlap. Each wiper has a blade of	
2	length 21 cm sweeping through an angle of 120°. Find the total area	
	cleaned at each sweep of the two blades.	
Sol.	Area cleaned by 1 blade = $\frac{22}{7} \times 21 \times 21 \times \frac{120^{\circ}}{360^{\circ}}$	1½
	= 462	1
	⇒ Total area cleaned = $2 \times 462 = 924$	1/2
	• Total area cleaned is 924 cm ²	
30 (a).	If the system of linear equations	
	2x + 3y = 7 and $2ax + (a + b)y = 28$	
1	have infinite number of solutions, then find the values of 'a'	
04	and 'b'.	
	TRICOPEC 2 - FUTSH	
	system has infinite number of solutions	
	$\therefore \frac{2}{2a} = \frac{3}{a+b} = \frac{7}{28}$	1
	$\Rightarrow \frac{1}{a} = \frac{1}{4} \Rightarrow a = 4$	1
a	and $a + b = 12 \Rightarrow b = 8$	1
	OR	

30(b).	If $217x + 131y = 913$ and	
	131x + 217y = 827,	
	then solve the equations for the values of x and y.	
Sol.	$217 \times + 131 \text{ y} = 913$	
	$\begin{bmatrix} 217 & 1 & 137 & 318 \\ 131 & x + 217 & y = 827 \end{bmatrix}$ Adding 348 (x + y) = 1740	
	x + y = 5	1
	Subtracting, $86 (x - y) = 86$	
	x-y=1	1
21	\Rightarrow x = 3, y = 2	$\frac{1}{2} + \frac{1}{2}$
31.	In the given figure, O is the centre of the circle and QPR is a tangent to it	
	at P. Prove that \angle QAP + \angle APR = 90°.	
	A	
	B	
	Q P R	
Sol.	OA = OP	
	$\therefore \text{ In } \triangle \text{ OAP, } \angle \text{ OPA} = \angle \text{ OAP } / \dots \text{ (i)}$	1
	$\Rightarrow \angle OPA + \angle APR = 90^{\circ}$	1
	$\Rightarrow \angle OAP + \angle APR = 90^{\circ} $ Using (i)	$\frac{1/2}{1/2}$
	$\Rightarrow \angle QAP + \angle APR = 90^{\circ}$	72
	SECTION D This section comprises of Long Answer (LA) type questions of 5 marks	
	each.	
32.	How many terms of the arithmetic progression 45, 39, 33, must be	
	taken so that their sum is 180? Explain the double answer.	
Sol.	45, 39, 33,	
	a = 45, d = -6	1/2
	$S_n = 180$	
	$180 = \frac{n}{2} [2 \times 45 + (n-1)(-6)]$	
	$\Rightarrow 180 = \frac{n}{2} [90 - 6n + 6]$	1

		I
	$\Rightarrow 360 = 96n - 6n^2$	
	$\Rightarrow 6n^2 - 96n + 360 = 0$	1
	\Rightarrow n ² - 16n + 60 = 0 \Rightarrow (n - 10) (n - 6) = 0	1
	$n-10=0, n-6=0 \Rightarrow n=10, 6$	1
	We get two values of 'n' as sum of 7 th term to 10 th term is zero as some terms are negative and some are positive.	1/2
33(a).	As observed from the top of a 75 m high lighthouse from the	
	sea-level, the angles of depression of two ships are 30° and 60°. If	
	one ship is exactly behind the other on the same side of the	
	lighthouse, find the distance between the two ships.	
	(Use $\sqrt{3} = 1.73$)	
Sol.	(0.50 40 - 1.10)	1 for
501.	x	correct
	30° (60°) Q	figure
	75 m	
	/ / / / / / / / /	
	(40)	
	S R P	
	PQ = Height of Light house = 75 m	
	$\angle XQS = \angle QSP = 30^{\circ}$	
	$\angle XQR = \angle QRP = 60^{\circ}$	
	R and S are position of ships.	
	In \triangle PQR,	
	$\frac{75}{PR} = \tan 60^\circ = \sqrt{3} \implies PR = \frac{75}{\sqrt{3}} = 25\sqrt{3}$	11/2
	$PR = \frac{1}{\sqrt{3}} = \frac{1}{\sqrt{3}} = \frac{23}{\sqrt{3}} = \frac{1}{\sqrt{3}} = \frac{1}{\sqrt{3}}$	1/2
	In \triangle PQS, $\frac{75}{PS} = \tan 30^{\circ}$	
	\Rightarrow PS = $75\sqrt{3}$	1

		1
	\therefore Distance between the ships, RS = PS – PR	
	$= 75\sqrt{3} - 25\sqrt{3} = 50\sqrt{3}$	1
	$= 50 \times 1.73 = 86.5$	1/2
	∴ Distance between the ships is 86.5 m	
22(1)	OR	
33(b).	From a point on the ground, the angle of elevation of the bottom	
	and top of a transmission tower fixed at the top of 30 m high	
	building are 30° and 60°, respectively. Find the height of the	
	transmission tower. (Use $\sqrt{3} = 1.73$)	
Sol.	P h m B 30 m	1 for correct figure
	$C = \frac{30^{\circ}}{1}$	
	Height of building AB = 30 m	
	BP = transmission tower = h(say) \angle ACB = 30°, \angle ACP = 60°	
	In \triangle ABC, tan $30^{\circ} = \frac{AB}{AC}$	
	$\Rightarrow \frac{1}{\sqrt{3}} = \frac{30}{AC} \Rightarrow AC = 30\sqrt{3}$	1½
	In \triangle APC, $\tan 60^{\circ} = \frac{AP}{AC}$	
	I	l

	$\sqrt{3} = \frac{30 + h}{30\sqrt{3}} \Rightarrow 30\sqrt{3} \times \sqrt{3} = 30 + h$							
	$\Rightarrow h = 30 (3 - 1)$							
	\Rightarrow h = 60							
2.4	: Height of transn	500	40 00	31 25 =	752586			
34.	A student noted the number of cars passing through a spot on a road for							
	100 periods each of 3 minutes and summarised it in the table given below. Find the mean and median of the following data.							
	Number of cars 0-10	10 - 20 20 - 30	30 – 40 4	0 - 50 50 - 60	60 – 70 70 – 80			
	Frequency (periods) 7	14 13	12	20 11	15 8			
Sol.								
	Number of cars	x _i	f _i	$x_i f_i$	c.f.			
	0 - 10	5	7	35	7			
	10 - 20	15	14	210	21			
	20 - 30	25	13	325	34			
	30 - 40	35	12	420	46			
	40 – 50	40 - 50 45 20 900 66						
	50 - 60	50 - 60 55 11 605 77						
	60 – 70	65	15	975	92			
	70 - 80	75	8	600	100			
	Т	otal	100	4070				
	<u> </u>	070			Correct table	2		
	Mean = $\frac{\sum x_i f_i}{\sum f_i} = \frac{4}{5}$	$\frac{670}{100} = 40.7$				1		
	Median class: 40 –	50				1/2		
	Median = $40 + \frac{50 - 46}{20} \times 10 = 42$							
35(a).	Sides AB and	100	500	of a triar	ngle ABC are			
	respectively prop	ortional to s	ides PQ a	and QR and	median PM of			
	Δ PQR. Show that Δ ABC \sim Δ PQR.							

Sol.		1 for
	ŗ	correct
	A	figure
	B D C Q M R	
	In \triangle ABC and \triangle PQR	
	$\frac{AB}{PQ} = \frac{BC}{QR} = \frac{AD}{PM}$	
	AD 2 DD AD	
	$\frac{AB}{PQ} = \frac{2BD}{2QM} = \frac{AD}{PM}$	1
	(∵ D is midpoint of BC and M is midpoint of QR)	
		1
	$\frac{AB}{PQ} = \frac{BD}{QM} = \frac{AD}{PM} \Rightarrow \Delta ABD \sim \Delta PQM$	1
	$\Rightarrow \angle B = \angle Q$ —(i)	1/2
	Now, In \triangle ABC and \triangle PQR	
	$\frac{AB}{PQ} = \frac{BC}{QR} $ (given)	
	$\angle B = \angle Q$ from (i)	1/2
	$\therefore \Delta ABC \sim \Delta PQR$	1
25/h)	OR '	
35(b).	Through the mid-point M of the side CD of a parallelogram ABCD,	
	the line BM is drawn intersecting AC in L and AD (produced) in E.	
	Prove that $EL = 2BL$.	

	JSUNIL TUTORIAL	CBSE.GOV.in	For CBSE BOARD EXAM 2024	
Sol.	A	E		1 for correct figure
	M			
	В			
	In \triangle BMC and \triangle EMD MC = MD			
	$\angle CMB = \angle EMD$			
	\angle MBC = \angle MED		\	
	$\therefore \ \Delta \ BMC \cong \Delta \ EMD$			1
	\Rightarrow BC = DE			
	But $AD = BC$ $\therefore AD = DE$		Q_7	
	$\Rightarrow AE = 2 BC$		Y	1
	Λ AEL ~ Λ CBL			1/2
	$\therefore \frac{EL}{BL} = \frac{AE}{BC}$ $\Rightarrow \frac{EL}{BL} = \frac{2BC}{BC}$ $\Rightarrow \frac{EL}{BL} = 2$			
	$\Rightarrow \frac{EL}{BI} = \frac{2BC}{BC}$			1/2
	$\Rightarrow \frac{EL}{PI} = 2$			
	$\Rightarrow EL = 2 BL$			1
				1
		Y		
	47			

	SECTION E						
	This section comprises of 3 case-study based questions of 4 marks each.						
36.	Case Study - 1						
	In an annual day function of a school, the organizers wanted to give a cash prize along with a memento to their best students. Each memento is made as shown in the figure and its base ABCD is shown from the front side. The rate of silver plating is ₹ 20 per cm ² .						
	Based on the above, answer the following questions: (i) What is the area of the quadrant ODCO?						
	(ii) Find the area of Δ AOB.						
	(iii) (a) What is the total cost of silver plating the shaded part ABCD?						
	OR						
	(iii) (b) What is the length of arc CD?						
Sol.	(i)Area of sector ODCO = $\frac{22}{7} \times 7 \times 7 \times \frac{90}{360} = \frac{77}{2}$ or 38.5	1/2 + 1/2					
	\therefore Area of sector ODCO is $\frac{77}{2}$ or 38.5 cm^2						
	(ii) ar $(\Delta \text{ AOB}) = \frac{1}{2} \times 10 \times 10 = 50$	1					
	\therefore ar (\triangle AOB) is 50 cm ²						
	(iii) (a) Required cost = $(50 - 38.5) \times 20$ = 230	1 1					
	= 230 ∴ required cost is ₹ 230.						
	OR						
	(iii) (b) Length of arc CD = $\frac{90}{360} \times 2 \times \frac{22}{7} \times 7$	1					
	= 11	1					
	∴ Length of arc CD is 11 cm.						

	JSUNIL TUTORIAL CBSE.GOV.in For CBSE BOARD EXAM 2024				
37.	Case Study - 2				
	In a coffee shop, coffee is served in two types of cups. One is cylindrical is shape with diameter 7 cm and height 14 cm and the other is hemispherical with diameter 21 cm.				
	Based on the above, answer the following questions:				
	(i) Find the area of the base of the cylindrical cup.				
	(ii) (a) What is the capacity of the hemispherical cup?				
	OR				
	(ii) (b) Find the capacity of the cylindrical cup.				
	(iii) What is the curved surface area of the cylindrical cup?				
C - 1	22 7 7 77				
Sol.	(i) Area of base of the cylindrical cup = $\frac{22}{7} \times \frac{7}{2} \times \frac{7}{2} = \frac{77}{2}$ or 38.5	1			
	\therefore Area of base of the cylindrical cup is $\frac{77}{2}$ or 38.5 cm ²				
	(ii) (a) Capacity of hemispherical cup = $\frac{2}{3} \times \frac{22}{7} \times \frac{21}{2} \times \frac{21}{2} \times \frac{21}{2}$	1			
	$= \frac{4851}{2} \text{ or } 2425.5$	1			
	∴ Capacity of hemispherical cup is $\frac{4851}{2}$ cm ³ or 2425.5 cm ³				
	OR				
	(ii) (b) Capacity of cylindrical cup = $\frac{22}{7} \times (7)^2 \times 14$	1			
	= 539	1			
	∴ Capacity of cylindrical cup is 539 cm ³				
	(iii) External Curved surface area of cylindrical cup = $2 \times \frac{22}{7} \times \frac{7}{2} \times 14 = 308$	1			
	• External Curved surface area of extindrical curvic 209 cm ²				

∴ External Curved surface area of cylindrical cup is 308 cm²

38.				Case Stu	ıdy - 3				
		Computer-based makes use of co school level, con lesson plans. A schools of Assar they had.	mputers for mputer ap survey w	or informat plications of as done o	ion transm can be use n 1000 ele	ission. At a d to displa ementary a	an elementa ny multimed and seconda	ry lia ry	
		Number of Computers Number of Schools One school is ch	1-10 250	11 – 20 200	21-50	51 – 100 180	101 and more 80		
		(i) Find the than 100 (ii) (a) Fin	probability computers d the prob or fewer co	that the	school chos		dom has mo		
		no (iii) Find the	more than	20 computer that the	ers.		at random h		
Sol.	(i)	P (more than	100 con	nputers)	$=\frac{80}{1000}$	or 0·08			1
	(ii)(a) 50 or fewer computers = $250 + 200 + 290 = 740$ Required probability = $\frac{740}{1000}$ or 0.74						1		
						1			
	OR								
	(ii)(b) No more than 20 computers = $250 + 200 = 450$					1			
		Required probability = $\frac{450}{1000}$ or 0.45				1			
	(iii)	P (10 or	r less tha	n 10 con	nputer) =	$\frac{250}{1000}$ o	or 0·25		1

1000